Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The demand for clean energy production and storage has increased interest in molten salt technologies, including Molten Salt Reactors (MSR). Understanding of how molten salts properties change with respect to temperature and structure is vital to establishing efficient, cost effective MSR systems. Research into these materials however has been limited due to the difficulty in accurately measuring properties of these reactive materials at elevated temperatures and controlled environment in a time efficient way. Much research has turned to molecular dynamic (MD) modeling to alleviate these issues. This research presents a custom fabricated falling ball viscometer system for measuring molten salt viscosity quickly. A model for correlating velocity to viscosity for Re < 300 was also developed for use with this system. The viscometer is demonstrated on eutectic FLiNaK and NaF-ZrF4 (53–47 mol%) up to 150 K above the respective melting points. The results are compared to MD simulations to verify their effectiveness for predicting viscosity and previously reported measurements.more » « lessFree, publicly-accessible full text available December 1, 2025
-
As the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-kdielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc. However, existing low-kdielectric materials, such as organosilicate glass or polymeric dielectrics, suffer from poor thermal and mechanical properties. Two-dimensional polymers (2DPs) are considered promising low-kdielectric materials because of their good thermal and mechanical properties, high porosity and designability. Here, we report a chemical-vapor-deposition (CVD) method for growing fluoride rich 2DP-F films on arbitrary substrates. We show that the grown 2DP-F thin films exhibit ultra-low dielectric constant (in plane k = 1.85 and out-of-plane k = 1.82) and remarkable mechanical properties (Young’s modulus > 15 GPa). We also demonstrated the improved performance of monolayer MoS2field-effect-transistors when utilizing 2DP-F thin films as dielectric substrates.more » « lessFree, publicly-accessible full text available December 1, 2025
-
The atomic structure of FLiNaK and its evolution with temperature are examined with x-ray scattering and molecular dynamics (MD) simulations in the temperature range 460–636 °C. In accord with previous studies, it’s observed that the average nearest-neighbor (NN) cation-anion coordination number increases with increasing cation size, going from ∼4 for Li-F to ∼6.4 for K-F. In addition, we find that there is a coupled change in local coordination geometry – going from tetrahedral for Li-F to octahedral for Na to very disordered quasi-cuboidal for K. The varying geometry and coordination distances for the cation-anion pairs cause a relatively constant F-F next-nearest neighbor (NNN) distance of approximately 3.1 Å. This relatively fixed distance allows the F anions to assume an overall correlated structure very similar to that of a hard-sphere liquid with an extended radius which is beyond the normal F ion size but reflects the cation-anion coordination requirements. Careful consideration of the evolution of the experimental atomic distribution functions with increasing temperature shows that the changes in correlation at each distance can be understood within the context of broadening asymmetric neighbor distributions. Within the temperature range studied, the evolution of F-F correlations with increasing temperature is consistent with changes expected in a hard-sphere liquid simply due to decreasing density.more » « less
An official website of the United States government
