Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Soil carbon loss is likely to increase due to climate warming, but microbiomes and microenvironments may dampen this effect. In a 30-year warming experiment, physical protection within soil aggregates affected the thermal responses of soil microbiomes and carbon dynamics. In this study, we combined metagenomic analysis with physical characterization of soil aggregates to explore mechanisms by which microbial communities respond to climate warming across different soil microenvironments. Long-term warming decreased the relative abundances of genes involved in degrading labile compounds (e.g., cellulose), but increased those genes involved in degrading recalcitrant compounds (e.g., lignin) across aggregate sizes. These changes were observed in most phyla of bacteria, especially for Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes. Microbial community composition was considerably altered by warming, leading to declined diversity for bacteria and fungi but not for archaea. Microbial functional genes, diversity, and community composition differed between macroaggregates and microaggregates, indicating the essential role of physical protection in controlling microbial community dynamics. Our findings suggest that microbes have the capacity to employ various strategies to acclimate or adapt to climate change (e.g., warming, heat stress) by shifting functional gene abundances and community structures in varying microenvironments, as regulated by soil physical protection.more » « lessFree, publicly-accessible full text available April 6, 2025
-
Abstract Soil carbon (C) responses to environmental change represent a major source of uncertainty in the global C cycle. Feedbacks between soil C stocks and climate drivers could impact atmospheric CO2levels, further altering the climate. Here, we assessed the reliability of Earth system model (ESM) predictions of soil C change using the Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6). ESMs predicted global soil C gains under the high emission scenario, with soils taking up 43.9 Pg (95% CI: 9.2–78.5 Pg) C on average during the 21st century. The variation in global soil C change declined significantly from CMIP5 (with average of 48.4 Pg [95% CI: 2.0–94.9 Pg] C) to CMIP6 models (with average of 39.3 Pg [95% CI: 23.9–54.7 Pg] C). For some models, a small C increase in all biomes contributed to this convergence. For other models, offsetting responses between cold and warm biomes contributed to convergence. Although soil C predictions appeared to converge in CMIP6, the dominant processes driving soil C change at global or biome scales differed among models and in many cases between earlier and later versions of the same model. Random Forest models, for soil carbon dynamics, accounted for more than 63% variation of the global soil C change predicted by CMIP5 ESMs, but only 36% for CMIP6 models. Although most CMIP6 models apparently agree on increased soil C storage during the 21st century, this consensus obscures substantial model disagreement on the mechanisms underlying soil C response, calling into question the reliability of model predictions.
-
Gilbert, Jack A (Ed.)
ABSTRACT Targeted amplicon sequencing is widely used in microbial ecology studies. However, sequencing artifacts and amplification biases are of great concern. To identify sources of these artifacts, a systematic analysis was performed using mock communities comprised of 16S rRNA genes from 33 bacterial strains. Our results indicated that while sequencing errors were generally isolated to low-abundance operational taxonomic units, chimeric sequences were a major source of artifacts. Singleton and doubleton sequences were primarily chimeras. Formation of chimeric sequences was significantly correlated with the GC content of the targeted sequences. Low-GC-content mock community members exhibited lower rates of chimeric sequence formation. GC content also had a large impact on sequence recovery. The quantitative capacity was notably limited, with substantial recovery variations and weak correlation between anticipated and observed strain abundances. The mock community strains with higher GC content had higher recovery rates than strains with lower GC content. Amplification bias was also observed due to the differences in primer affinity. A two-step PCR strategy reduced the number of chimeric sequences by half. In addition, comparative analyses based on the mock communities showed that several widely used sequence processing pipelines/methods, including DADA2, Deblur, UCLUST, UNOISE, and UPARSE, had different advantages and disadvantages in artifact removal and rare species detection. These results are important for improving sequencing quality and reliability and developing new algorithms to process targeted amplicon sequences.
IMPORTANCE Amplicon sequencing of targeted genes is the predominant approach to estimate the membership and structure of microbial communities. However, accurate reconstruction of community composition is difficult due to sequencing errors, and other methodological biases and effective approaches to overcome these challenges are essential. Using a mock community of 33 phylogenetically diverse strains, this study evaluated the effect of GC content on sequencing results and tested different approaches to improve overall sequencing accuracy while characterizing the pros and cons of popular amplicon sequence data processing approaches. The sequencing results from this study can serve as a benchmarking data set for future algorithmic improvements. Furthermore, the new insights on sequencing error, chimera formation, and GC bias from this study will help enhance the quality of amplicon sequencing studies and support the development of new data analysis approaches.
-
Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and ‘drift’ related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.more » « less
-
Zhao, Liping ; Bello, Maria Gloria (Ed.)ABSTRACT Complex interactions exist among microorganisms in a community to carry out ecological processes and adapt to changing environments. Here, we constructed a quad-culture consisting of a cellulolytic bacterium ( Ruminiclostridium cellulolyticum ), a hydrogenotrophic methanogen ( Methanospirillum hungatei ), an acetoclastic methanogen ( Methanosaeta concilii ), and a sulfate-reducing bacterium ( Desulfovibrio vulgaris ). The four microorganisms in the quad-culture cooperated via cross-feeding to produce methane using cellulose as the only carbon source and electron donor. The community metabolism of the quad-culture was compared with those of the R. cellulolyticum -containing tri-cultures, bi-cultures, and mono-culture. Methane production was higher in the quad-culture than the sum of the increases in the tri-cultures, which was attributed to a positive synergy of four species. In contrast, cellulose degradation by the quad-culture was lower than the additive effects of the tri-cultures which represented a negative synergy. The community metabolism of the quad-culture was compared between a control condition and a treatment condition with sulfate addition using metaproteomics and metabolic profiling. Sulfate addition enhanced sulfate reduction and decreased methane and CO 2 productions. The cross-feeding fluxes in the quad-culture in the two conditions were modeled using a community stoichiometric model. Sulfate addition strengthened metabolic handoffs from R. cellulolyticum to M. concilii and D. vulgaris and intensified substrate competition between M. hungatei and D. vulgaris . Overall, this study uncovered emergent properties of higher-order microbial interactions using a four-species synthetic community. IMPORTANCE A synthetic community was designed using four microbial species that together performed distinct key metabolic processes in the anaerobic degradation of cellulose to methane and CO 2 . The microorganisms exhibited expected interactions, such as cross-feeding of acetate from a cellulolytic bacterium to an acetoclastic methanogen and competition of H 2 between a sulfate reducing bacterium and a hydrogenotrophic methanogen. This validated our rational design of the interactions between microorganisms based on their metabolic roles. More interestingly, we also found positive and negative synergies as emergent properties of high-order microbial interactions among three or more microorganisms in cocultures. These microbial interactions can be quantitatively measured by adding and removing specific members. A community stoichiometric model was constructed to represent the fluxes in the community metabolic network. This study paved the way toward a more predictive understanding of the impact of environmental perturbations on microbial interactions sustaining geochemically significant processes in natural systems.more » « less
-
Abstract Unravelling biosphere feedback mechanisms is crucial for predicting the impacts of global warming. Soil priming, an effect of fresh plant-derived carbon (C) on native soil organic carbon (SOC) decomposition, is a key feedback mechanism that could release large amounts of soil C into the atmosphere. However, the impacts of climate warming on soil priming remain elusive. Here, we show that experimental warming accelerates soil priming by 12.7% in a temperate grassland. Warming alters bacterial communities, with 38% of unique active phylotypes detected under warming. The functional genes essential for soil C decomposition are also stimulated, which could be linked to priming effects. We incorporate lab-derived information into an ecosystem model showing that model parameter uncertainty can be reduced by 32–37%. Model simulations from 2010 to 2016 indicate an increase in soil C decomposition under warming, with a 9.1% rise in priming-induced CO2emissions. If our findings can be generalized to other ecosystems over an extended period of time, soil priming could play an important role in terrestrial C cycle feedbacks and climate change.
-
Whiteley, Marvin (Ed.)ABSTRACT Climate change is the most serious challenge facing humanity. Microbes produce and consume three major greenhouse gases—carbon dioxide, methane, and nitrous oxide—and some microbes cause human, animal, and plant diseases that can be exacerbated by climate change. Hence, microbial research is needed to help ameliorate the warming trajectory and cascading effects resulting from heat, drought, and severe storms. We present a brief summary of what is known about microbial responses to climate change in three major ecosystems: terrestrial, ocean, and urban. We also offer suggestions for new research directions to reduce microbial greenhouse gases and mitigate the pathogenic impacts of microbes. These include performing more controlled studies on the climate impact on microbial processes, system interdependencies, and responses to human interventions, using microbes and their carbon and nitrogen transformations for useful stable products, improving microbial process data for climate models, and taking the One Health approach to study microbes and climate change.more » « less
-
Abstract Incorporating microbial processes into soil biogeochemical models has received growing interest. However, determining the parameters that govern microbially driven biogeochemical processes typically requires case‐specific model calibration in various soil and ecosystem types. Here each case refers to an independent and individual experimental unit subjected to repeated measurements. Using the Microbial‐ENzyme Decomposition model, this study aimed to test whether a common set of microbially‐relevant parameters (i.e., generalized parameters) could be obtained across multiple cases based on a two‐year incubation experiment in which soil samples of four distinct soil series (i.e., Coland, Kesswick, Westmoreland, and Etowah) collected from forest and grassland were subjected to cellulose or no cellulose amendment. Results showed that a common set of parameters controlling microbial growth and maintenance as well as extracellular enzyme production and turnover could be generalized at the soil series level but not land cover type. This indicates that microbial model developments need to prioritize soil series type over plant functional types when implemented across various sites. This study also suggests that, in addition to heterotrophic respiration and microbial biomass data, extracellular enzyme data sets are needed to achieve reliable microbial‐relevant parameters for large‐scale soil model projections.