Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 19, 2025
-
Operating distributed Scrubbing Centers (SCs) to mitigate massive Distributed Denial of Service (DDoS) traffic in large-scale networks faces critical challenges. The operator needs to determine the diversion rule installation and elimination in the networks, as well as the scrubbing resource activation and revocation in the SCs, while minimizing the long-term cost and the cumulative decision-switching penalty without knowing the exact amount of the malicious traffic. We model and formulate this problem as an online nonlinear integer program. In contrast to many other online problems where future inputs are unknown but at least current inputs are known, a key new challenge here is that even part of the current inputs are unknown when decisions are made. To learn the best decisions online, we transform our problem via a gap-preserving approximation into an online optimization problem with only the known inputs, which is further relaxed and decoupled into a series of one-shot convex programs solvable in individual time slots. To overcome the intractability, we design a progressive rounding algorithm to convert fractional decisions into integral ones without violating the constraints. We characterize the competitive ratio of our approach as a function of the key parameters of our problem. We conduct evaluations using real-world data and confirm our algorithms’ superiority over de facto practices and state-of-the-art methodsmore » « less