skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhu, Qile"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Taking an answer and its context as input, sequence-to-sequence models have made considerable progress on question generation. However, we observe that these approaches often generate wrong question words or keywords and copy answer-irrelevant words from the input. We believe that lacking global question semantics and exploiting answer position-awareness not well are the key root causes. In this paper, we propose a neural question generation model with two general modules: sentence-level semantic matching and answer position inferring. Further, we enhance the initial state of the decoder by leveraging the answer-aware gated fusion mechanism. Experimental results demonstrate that our model outperforms the state-of-the-art (SOTA) models on SQuAD and MARCO datasets. Owing to its generality, our work also improves the existing models significantly. 
    more » « less
  2. Discovering the latent topics within texts has been a fundamental task for many applica- tions. However, conventional topic models suffer different problems in different settings. The Latent Dirichlet Allocation (LDA) may not work well for short texts due to the data sparsity (i.e., the sparse word co-occurrence patterns in short documents). The Biterm Topic Model (BTM) learns topics by mod- eling the word-pairs named biterms in the whole corpus. This assumption is very strong when documents are long with rich topic in- formation and do not exhibit the transitivity of biterms. In this paper, we propose a novel way called GraphBTM to represent biterms as graphs and design Graph Convolutional Net- works (GCNs) with residual connections to extract transitive features from biterms. To overcome the data sparsity of LDA and the strong assumption of BTM, we sample a fixed number of documents to form a mini-corpus as a training instance. We also propose a dataset called All News extracted from (Thompson, 2017), in which documents are much longer than 20 Newsgroups. We present an amortized variational inference method for GraphBTM. Our method generates more coherent topics compared with previous approaches. Exper- iments show that the sampling strategy im- proves performance by a large margin. 
    more » « less
  3. Discovering the latent topics within texts has been a fundamental task for many applica- tions. However, conventional topic models suffer different problems in different settings. The Latent Dirichlet Allocation (LDA) may not work well for short texts due to the data sparsity (i.e., the sparse word co-occurrence patterns in short documents). The Biterm Topic Model (BTM) learns topics by mod- eling the word-pairs named biterms in the whole corpus. This assumption is very strong when documents are long with rich topic in- formation and do not exhibit the transitivity of biterms. In this paper, we propose a novel way called GraphBTM to represent biterms as graphs and design Graph Convolutional Net- works (GCNs) with residual connections to extract transitive features from biterms. To overcome the data sparsity of LDA and the strong assumption of BTM, we sample a fixed number of documents to form a mini-corpus as a training instance. We also propose a dataset called All News extracted from (Thompson, 2017), in which documents are much longer than 20 Newsgroups. We present an amortized variational inference method for GraphBTM. Our method generates more coherent topics compared with previous approaches. Exper- iments show that the sampling strategy im- proves performance by a large margin. 
    more » « less