Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Object detection in high-resolution aerial images is a challenging task because of 1) the large variation in object size, and 2) non-uniform distribution of objects. A common solution is to divide the large aerial image into small (uniform) crops and then apply object detection on each small crop. In this paper, we investigate the image cropping strategy to address these challenges. Specifically, we propose a Density-Map guided object detection Network (DMNet), which is inspired from the observation that the object density map of an image presents how objects distribute in terms of the pixel intensity of the map. As pixel intensity varies, it is able to tell whether a region has objects or not, which in turn provides guidance for cropping images statistically. DMNet has three key components: a density map generation module, an image cropping module and an object detector. DMNet generates a density map and learns scale information based on density intensities to form cropping regions. Extensive experiments show that DMNet achieves state-of-the-art performance on two popular aerial image datasets, i.e. VisionDrone and UAVDT.more » « less
-
We propose the width-resolution mutual learning method (MutualNet) to train a network that is executable at dynamic resource constraints to achieve adaptive accuracy-efficiency trade-offs at runtime. Our method trains a cohort of sub-networks with different widths (i.e., number of channels in a layer) using different input resolutions to mutually learn multi-scale representations for each sub-network. It achieves consistently better ImageNet top-1 accuracy over the state-of-the-art adaptive network US-Net under different computation constraints, and outperforms the best compound scaled MobileNet in EfficientNet by 1.5%. The superiority of our method is also validated on COCO object detection and instance segmentation as well as transfer learning. Surprisingly, the training strategy of MutualNet can also boost the performance of a single network, which substantially outperforms the powerful AutoAugmentation in both efficiency (GPU search hours: 15000 vs. 0) and accuracy (ImageNet: 77.6% vs. 78.6%). Code is available at https://github.com/ aoyang1122/MutualNetmore » « less