skip to main content

Search for: All records

Creators/Authors contains: "Zic, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the results of a radio transient and polarization survey towards the Galactic Centre, conducted as part of the Australian Square Kilometre Array Pathfinder Variables and Slow Transients pilot survey. The survey region consisted of five fields covering $\sim 265\, {\rm deg}^2$ (350○ ≲ l ≲ 10○, |b| ≲ 10○). Each field was observed for 12 min, with between 7 and 9 repeats on cadences of between one day and four months. We detected eight highly variable sources and seven highly circularly polarized sources (14 unique sources in total). Seven of these sources are known pulsars including the rotating radio transient PSR J1739–2521 and the eclipsing pulsar PSR J1723–2837. One of them is a low-mass X-ray binary, 4U 1758–25. Three of them are coincident with optical or infrared sources and are likely to be stars. The remaining three may be related to the class of Galactic Centre Radio Transients (including a highly likely one, VAST J173608.2–321634, that has been reported previously), although this class is not yet understood. In the coming years, we expect to detect ∼40 bursts from this kind of source with the proposed 4-yr VAST survey if the distribution of the source is isotropic over the Galactic fields.

  2. Abstract We report the discovery of a highly circularly polarized, variable, steep-spectrum pulsar in the Australian Square Kilometre Array Pathfinder (ASKAP) Variables and Slow Transients (VAST) survey. The pulsar is located about 1° from the center of the Large Magellanic Cloud, and has a significant fractional circular polarization of ∼20%. We discovered pulsations with a period of 322.5 ms, dispersion measure (DM) of 157.5 pc cm −3 , and rotation measure (RM) of +456 rad m −2 using observations from the MeerKAT and the Parkes telescopes. This DM firmly places the source, PSR J0523−7125, in the Large Magellanic Cloud (LMC). This RM is extreme compared to other pulsars in the LMC (more than twice that of the largest previously reported one). The average flux density of ∼1 mJy at 1400 MHz and ∼25 mJy at 400 MHz places it among the most luminous radio pulsars known. It likely evaded previous discovery because of its very steep radio spectrum (spectral index α ≈ −3, where S ν ∝ ν α ) and broad pulse profile (duty cycle ≳35%). We discuss implications for searches for unusual radio sources in continuum images, as well as extragalactic pulsars in the Magellanic Clouds and beyond.more »Our result highlighted the possibility of identifying pulsars, especially extreme pulsars, from radio continuum images. Future large-scale radio surveys will give us an unprecedented opportunity to discover more pulsars and potentially the most distant pulsars beyond the Magellanic Clouds.« less
    Free, publicly-accessible full text available May 1, 2023
  3. Abstract The aim of the search for extraterrestrial intelligence (SETI) is to find technologically capable life beyond Earth through their technosignatures. On 2019 April 29, the Breakthrough Listen SETI project observed Proxima Centauri with the Parkes ‘Murriyang’ radio telescope. These data contained a narrowband signal with characteristics broadly consistent with a technosignature near 982 MHz (‘blc1’). Here we present a procedure for the analysis of potential technosignatures, in the context of the ubiquity of human-generated radio interference, which we apply to blc1. Using this procedure, we find that blc1 is not an extraterrestrial technosignature, but rather an electronically drifting intermodulation product of local, time-varying interferers aligned with the observing cadence. We find dozens of instances of radio interference with similar morphologies to blc1 at frequencies harmonically related to common clock oscillators. These complex intermodulation products highlight the necessity for detailed follow-up of any signal of interest using a procedure such as the one outlined in this work.
  4. Abstract

    The detection of life beyond Earth is an ongoing scientific pursuit, with profound implications. One approach, known as the search for extraterrestrial intelligence (SETI), seeks to find engineered signals (‘technosignatures’) that indicate the existence of technologically capable life beyond Earth. Here, we report on the detection of a narrowband signal of interest at ~982 MHz, recorded during observations towards Proxima Centauri with the Parkes Murriyang radio telescope. This signal, BLC1, has characteristics broadly consistent with hypothesized technosignatures and is one of the most compelling candidates to date. Analysis of BLC1—which we ultimately attribute to being an unusual but locally generated form of interference—is provided in a companion paper. Nevertheless, our observations of Proxima Centauri are a particularly sensitive search for radio technosignatures towards a stellar target.

  5. ABSTRACT We present results from a circular polarization survey for radio stars in the Rapid ASKAP Continuum Survey (RACS). RACS is a survey of the entire sky south of δ = +41○ being conducted with the Australian Square Kilometre Array Pathfinder telescope (ASKAP) over a 288 MHz wide band centred on 887.5 MHz. The data we analyse include Stokes I and V polarization products to an RMS sensitivity of 250 μJy PSF−1. We searched RACS for sources with fractional circular polarization above 6 per cent, and after excluding imaging artefacts, polarization leakage, and known pulsars we identified radio emission coincident with 33 known stars. These range from M-dwarfs through to magnetic, chemically peculiar A- and B-type stars. Some of these are well-known radio stars such as YZ CMi and CU Vir, but 23 have no previous radio detections. We report the flux density and derived brightness temperature of these detections and discuss the nature of the radio emission. We also discuss the implications of our results for the population statistics of radio stars in the context of future ASKAP and Square Kilometre Array surveys.
  6. ABSTRACT Active M dwarfs are known to produce bursty radio emission, and multiwavelength studies have shown that solar-like magnetic activity occurs in these stars. However, coherent bursts from active M dwarfs have often been difficult to interpret in the solar activity paradigm. We present Australian Square Array Pathfinder (ASKAP) observations of UV Ceti at a central frequency of 888 MHz. We detect several periodic, coherent pulses occurring over a time-scale consistent with the rotational period of UV Ceti. The properties of the pulsed emission show that they originate from the electron cyclotron maser instability, in a cavity at least 7 orders of magnitude less dense than the mean coronal density at the estimated source altitude. These results confirm that auroral activity can occur in active M dwarfs, suggesting that these stars mark the beginning of the transition from solar-like to auroral magnetospheric behaviour. These results demonstrate the capabilities of ASKAP for detecting polarized, coherent bursts from active stars and other systems.