skip to main content


Search for: All records

Creators/Authors contains: "Ziems, Noah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Detecting security vulnerabilities in software before they are exploited has been a challenging problem for decades. Traditional code analysis methods have been proposed, but are often ineffective and inefficient. In this work, we model software vulnerability detection as a natural language processing (NLP) problem with source code treated as texts, and address the auto-mated software venerability detection with recent advanced deep learning NLP models assisted by transfer learning on written English. For training and testing, we have preprocessed the NIST NVD/SARD databases and built a dataset of over 100,000 files in C programming language with 123 types of vulnerabilities. The extensive experiments generate the best performance of over 93% accuracy in detecting security vulnerabilities. 
    more » « less
  2. null (Ed.)
    Primary Hyperparathyroidism(PHPT) is a relatively common disease, affecting about one in every 1,000 adults. However, screening for PHPT can be difficult, meaning it often goes undiagnosed for long periods of time. While looking at specific blood test results independently can help indicate whether a patient has PHPT, often these blood result levels can all be within their respective normal ranges despite the patient having PHPT. Based on the clinic data from the real world, in this work, we propose a novel approach to screening PHPT with neural network (NN) architecture, achieving over 97% accuracy with common blood values as inputs. Further, we propose a second model achieving over 99% accuracy with additional lab test values as inputs. Moreover, compared to traditional PHPT screening methods, our NN models can reduce the false negatives of traditional screening methods by 99%. 
    more » « less