skip to main content

Search for: All records

Creators/Authors contains: "Zou, Hu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    A sample of 279 massive red spirals was selected optically by Guo et al., among which 166 galaxies have been observed by the ALFALFA survey. In this work, we observe H i content of the rest 113 massive red spiral galaxies using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). 75 of the 113 galaxies have H i detection with a signal-to-noise ratio (S/N) greater than 4.7. Compared with the red spirals in the same sample that have been observed by the ALFALFA survey, galaxies observed by FAST have on average a higher S/N, and reach to a lower H i mass. To investigate why many red spirals contain a significant amount of H i mass, we check colour profiles of the massive red spirals using images observed by the DESI Legacy Imaging Surveys. We find that galaxies with H i detection have bluer outer discs than the galaxies without H i detection, for both ALFALFA and FAST samples. For galaxies with H i detection, there exists a clear correlation between galaxy H i mass and g-r colour at outer radius: galaxies with higher H i masses have bluer outer discs. The results indicate that optically selected massive red spirals are not fully quenched, and the H i gas observed inmore »many of the galaxies may exist in their outer blue discs.

    « less
  2. Abstract

    We utilize ∼17,000 bright luminous red galaxies (LRGs) from the novel Dark Energy Spectroscopic Instrument Survey Validation spectroscopic sample, leveraging its deep (∼2.5 hr galaxy−1exposure time) spectra to characterize the contribution of recently quenched galaxies to the massive galaxy population at 0.4 <z< 1.3. We useProspectorto infer nonparametric star formation histories and identify a significant population of recently quenched galaxies that have joined the quiescent population within the past ∼1 Gyr. The highest-redshift subset (277 atz> 1) of our sample of recently quenched galaxies represents the largest spectroscopic sample of post-starburst galaxies at that epoch. At 0.4 <z< 0.8, we measure the number density of quiescent LRGs, finding that recently quenched galaxies constitute a growing fraction of the massive galaxy population with increasing look-back time. Finally, we quantify the importance of this population among massive (log(M/M)> 11.2) LRGs by measuring the fraction of stellar mass each galaxy formed in the gigayear before observation,f1 Gyr. Although galaxies withf1 Gyr> 0.1 are rare atz∼ 0.4 (≲0.5% of the population), byz∼ 0.8, they constitute ∼3% of massive galaxies. Relaxing this threshold, we find that galaxies withf1 Gyr> 5% constitute ∼10% of the massive galaxy population atzmore »0.8. We also identify a small but significant sample of galaxies atz= 1.1–1.3 that formed withf1 Gyr> 50%, implying that they may be analogs to high-redshift quiescent galaxies that formed on similar timescales. Future analysis of this unprecedented sample promises to illuminate the physical mechanisms that drive the quenching of massive galaxies after cosmic noon.

    « less
  3. ABSTRACT

    We investigate using three-point statistics in constraining the galaxy–halo connection. We show that for some galaxy samples, the constraints on the halo occupation distribution parameters are dominated by the three-point function signal (over its two-point counterpart). We demonstrate this on mock catalogues corresponding to the Luminous red galaxies (LRGs), Emission-line galaxies (ELGs), and quasars (QSOs) targeted by the Dark Energy Spectroscopic Instrument (DESI) Survey. The projected three-point function for triangle sides less up to 20 h−1 Mpc measured from a cubic Gpc of data can constrain the characteristic minimum mass of the LRGs with a preci sion of 0.46 per cent. For comparison, similar constraints from the projected two-point function are 1.55 per cent. The improvements for the ELGs and QSOs targets are more modest. In the case of the QSOs, it is caused by the high shot-noise of the sample, and in the case of the ELGs, it is caused by the range of halo masses of the host haloes. The most time-consuming part of our pipeline is the measurement of the three-point functions. We adopt a tabulation method, proposed in earlier works for the two-point function, to significantly reduce the required compute time for the three-point analysis.

  4. Abstract

    Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. Atz< 0.6, the DESI Bright Galaxy Survey (BGS) will produce the most detailed map of the universe during the dark-energy-dominated epoch with redshifts of >10 million galaxies spanning 14,000 deg2. In this work, we present and validate the final BGS target selection and survey design. From the Legacy Surveys, BGS will target anr< 19.5 mag limited sample (BGS Bright), a fainter 19.5 <r< 20.175 color-selected sample (BGS Faint), and a smaller low-zquasar sample. BGS will observe these targets using exposure times scaled to achieve homogeneous completeness and cover the footprint three times. We use observations from the Survey Validation programs conducted prior to the main survey along with simulations to show that BGS can complete its strategy and make optimal use of “bright” time. BGS targets have stellar contamination <1%, and their densities do not depend strongly on imaging properties. BGS Bright will achieve >80% fiber assignment efficiency. Finally, BGS Bright and BGS Faint will achieve >95% redshift success overmore »any observing condition. BGS meets the requirements for an extensive range of scientific applications. BGS will yield the most precise baryon acoustic oscillation and redshift-space distortion measurements atz< 0.4. It presents opportunities for new methods that require highly complete and dense samples (e.g.,N-point statistics, multitracers). BGS further provides a powerful tool to study galaxy populations and the relations between galaxies and dark matter.

    « less
  5. Abstract

    We describe the Milky Way Survey (MWS) that will be undertaken with the Dark Energy Spectroscopic Instrument (DESI) on the Mayall 4 m telescope at the Kitt Peak National Observatory. Over the next 5 yr DESI MWS will observe approximately seven million stars at Galactic latitudes ∣b∣ > 20°, with an inclusive target selection scheme focused on the thick disk and stellar halo. MWS will also include several high-completeness samples of rare stellar types, including white dwarfs, low-mass stars within 100 pc of the Sun, and horizontal branch stars. We summarize the potential of DESI to advance understanding of the Galactic structure and stellar evolution. We introduce the final definitions of the main MWS target classes and estimate the number of stars in each class that will be observed. We describe our pipelines for deriving radial velocities, atmospheric parameters, and chemical abundances. We use ≃500,000 spectra of unique stellar targets from the DESI Survey Validation program (SV) to demonstrate that our pipelines can measure radial velocities to ≃1 km s−1and [Fe/H] accurate to ≃0.2 dex for typical stars in our main sample. We find the stellar parameter distributions from ≈100 deg2of SV observations with ≳90% completeness on our mainmore »sample are in good agreement with expectations from mock catalogs and previous surveys.

    « less
  6. Abstract

    In 2021 May, the Dark Energy Spectroscopic Instrument (DESI) began a 5 yr survey of approximately 50 million total extragalactic and Galactic targets. The primary DESI dark-time targets are emission line galaxies, luminous red galaxies, and quasars. In bright time, DESI will focus on two surveys known as the Bright Galaxy Survey and the Milky Way Survey. DESI also observes a selection of “secondary” targets for bespoke science goals. This paper gives an overview of the publicly available pipeline (desitarget) used to process targets for DESI observations. Highlights include details of the different DESI survey targeting phases, the targeting ID (TARGETID) used to define unique targets, the bitmasks used to indicate a particular type of target, the data model and structure of DESI targeting files, and examples of how to access and use thedesitargetcode base. This paper will also describe “supporting” DESI target classes, such as standard stars, sky locations, and random catalogs that mimic the angular selection function of DESI targets. The DESI target-selection pipeline is complex and sizable; this paper attempts to summarize the most salient information required to understand and work with DESI targeting data.

  7. Abstract

    A system of 5020 robotic fiber positioners was installed in 2019 on the Mayall Telescope, at Kitt Peak National Observatory. The robots automatically retarget their optical fibers every 10–20 minutes, each to a precision of several microns, with a reconfiguration time of fewer than 2 minutes. Over the next 5 yr, they will enable the newly constructed Dark Energy Spectroscopic Instrument (DESI) to measure the spectra of 35 million galaxies and quasars. DESI will produce the largest 3D map of the universe to date and measure the expansion history of the cosmos. In addition to the 5020 robotic positioners and optical fibers, DESI’s Focal Plane System includes six guide cameras, four wave front cameras, 123 fiducial point sources, and a metrology camera mounted at the primary mirror. The system also includes associated structural, thermal, and electrical systems. In all, it contains over 675,000 individual parts. We discuss the design, construction, quality control, and integration of all these components. We include a summary of the key requirements, the review and acceptance process, on-sky validations of requirements, and lessons learned for future multiobject, fiber-fed spectrographs.