skip to main content


Search for: All records

Creators/Authors contains: "Zou, Jia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Storing tabular data to balance storage and query efficiency is a long-standing research question in the database community. In this work, we argue and show that a novel DeepMapping abstraction, which relies on the impressive memorization capabilities of deep neural networks, can provide better storage cost, better latency, and better run-time memory footprint, all at the same time. Such unique properties may benefit a broad class of use cases in capacity-limited devices. Our proposed DeepMapping abstraction transforms a dataset into multiple key-value mappings and constructs a multi-tasking neural network model that outputs the corresponding values for a given input key. To deal with memorization errors, DeepMapping couples the learned neural network with a lightweight auxiliary data structure capable of correcting mistakes. The auxiliary structure design further enables DeepMapping to efficiently deal with insertions, deletions, and updates even without retraining the mapping. We propose a multi-task search strategy for selecting the hybrid DeepMapping structures (including model architecture and auxiliary structure) with a desirable trade-off among memorization capacity, size, and efficiency. Extensive experiments with a real-world dataset, synthetic and benchmark datasets, including TPC-H and TPC-DS, demonstrated that the DeepMapping approach can better balance the retrieving speed and compression ratio against several cutting-edge competitors. 
    more » « less
    Free, publicly-accessible full text available May 13, 2025
  2. Serving deep learning (DL) models on relational data has become a critical requirement across diverse commercial and scientific domains, sparking growing interest recently. In this visionary paper, we embark on a comprehensive exploration of representative architectures to address the requirement. We highlight three pivotal paradigms: The state-of-the-art \textit{DL-centric} architecture offloads DL computations to dedicated DL frameworks. The potential \textit{UDF-centric} architecture encapsulates one or more tensor computations into User Defined Functions (UDFs) within the relational database management system (RDBMS). The potential \textit{relation-centric} architecture aims to represent a large-scale tensor computation through relational operators. While each of these architectures demonstrates promise in specific use scenarios, we identify urgent requirements for seamless integration of these architectures and the middle ground in-between these architectures. We delve into the gaps that impede the integration and explore innovative strategies to close them. We present a pathway to establish a novel RDBMS for enabling a broad class of data-intensive DL inference applications. 
    more » « less
  3. Decision forest, including RandomForest, XGBoost, and Light-GBM, dominates the machine learning tasks over tabular data. Recently, several frameworks were developed for decision forest inference, such as ONNX, TreeLite from Amazon, TensorFlow Decision Forest from Google, HummingBirdfrom Microsoft, Nvidia FIL, and lleaves. While these frameworks are fully optimized for inference computations, they are all decoupled with databases and general data management frameworks, which leads to cross-system performance overheads. We first provided a DICT model to understand the performance gaps between decoupled and in-database inference. We further identified that for in-database inference, in addition to the popular UDF-centric representation that encapsulates the ML into one User Defined Function(UDF), there also exists a relation-centric representation that breaks down the decision forest inference into several fine-grained SQL operations. The relation-centric representation can achieve significantly better performance for large models. We optimized both implementations and conducted a comprehensive benchmark to compare these two implementations to the aforementioned decoupled inference pipelines and existing in-database inference pipelines such as Spark-SQL and PostgresML. The evaluation results validated the DICT model and demonstrated the superior performance of our in-database inference design compared to the baselines. 
    more » « less
  4. Existing approaches to automatic data transformation are insufficient to meet the requirements in many real-world scenarios, such as the building sector. First, there is no convenient interface for domain experts to provide domain knowledge easily. Second, they require significant training data collection overheads. Third, the accuracy suffers from complicated schema changes. To address these shortcomings, we present a novel approach that leverages the unique capabilities of large language models (LLMs) in coding, complex reasoning, and zero-shot learning to generate SQL code that transforms the source datasets into the target datasets. We demonstrate the viability of this approach by designing an LLM-based framework, termed SQLMorpher, which comprises a prompt generator that integrates the initial prompt with optional domain knowledge and historical patterns in external databases. It also implements an iterative prompt optimization mechanism that automatically improves the prompt based on flaw detection. The key contributions of this work include (1) pioneering an end-to-end LLM-based solution for data transformation, (2) developing a benchmark dataset of 105 real-world building energy data transformation problems, and (3) conducting an extensive empirical evaluation where our approach achieved 96% accuracy in all 105 problems. SQLMorpher demonstrates the effectiveness of utilizing LLMs in complex, domain-specific challenges, highlighting the potential of their potential to drive sustainable solutions. 
    more » « less
  5. Deep learning has become the most popular direction in machine learning and artificial intelligence. However, the preparation of training data, as well as model training, are often time-consuming and become the bottleneck of the end-to-end machine learning lifecycle. Reusing models for inferring a dataset can avoid the costs of retraining. However, when there are multiple candidate models, it is challenging to discover the right model for reuse. Although there exist a number of model-sharing platforms such as ModelDB, TensorFlow Hub, PyTorch Hub, and DLHub, most of these systems require model uploaders to manually specify the details of each model and model downloaders to screen keyword search results for selecting a model. We are lacking a highly productive model search tool that selects models for deployment without the need for any manual inspection and/or labeled data from the target domain. This paper proposes multiple model search strategies including various similarity-based approaches and non-similarity-based approaches. We design, implement and evaluate these approaches on multiple model inference scenarios, including activity recognition, image recognition, text classification, natural language processing, and entity matching. The experimental evaluation showed that our proposed asymmetric similarity-based measurement, adaptivity, outperformed symmetric similarity-based measurements and non-similarity-based measurements in most of the workloads. 
    more » « less
  6. Serving deep learning models from relational databases brings significant benefits. First, features extracted from databases do not need to be transferred to any decoupled deep learning systems for inferences, and thus the system management overhead can be significantly reduced. Second, in a relational database, data management along the storage hierarchy is fully integrated with query processing, and thus it can continue model serving even if the working set size exceeds the available memory. Applying model deduplication can greatly reduce the storage space, memory footprint, cache misses, and inference latency. However, existing data deduplication techniques are not applicable to the deep learning model serving applications in relational databases. They do not consider the impacts on model inference accuracy as well as the inconsistency between tensor blocks and database pages. This work proposed synergistic storage optimization techniques for duplication detection, page packing, and caching, to enhance database systems for model serving. Evaluation results show that our proposed techniques significantly improved the storage efficiency and the model inference latency, and outperformed existing deep learning frameworks in targeting scenarios. 
    more » « less
  7. We consider the question: what is the abstraction that should be implemented by the computational engine of a machine learning system? Current machine learning systems typically push whole tensors through a series of compute kernels such as matrix multiplications or activation functions, where each kernel runs on an AI accelerator (ASIC) such as a GPU. This implementation abstraction provides little built-in support for ML systems to scale past a single machine, or for handling large models with matrices or tensors that do not easily fit into the RAM of an ASIC. In this paper, we present an alternative implementation abstraction called the tensor relational algebra (TRA). The TRA is a set-based algebra based on the relational algebra. Expressions in the TRA operate over binary tensor relations, where keys are multi-dimensional arrays and values are tensors. The TRA is easily executed with high efficiency in a parallel or distributed environment, and amenable to automatic optimization. Our empirical study shows that the optimized TRA-based back-end can significantly outperform alternatives for running ML workflows in distributed clusters. 
    more » « less
  8. null (Ed.)