Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Heatmap regression-based models have significantly advanced the progress of facial landmark detection. However, the lack of structural constraints always generates inaccurate heatmaps resulting in poor landmark detection performance. While hierarchical structure modeling methods have been proposed to tackle this issue, they all heavily rely on manually designed tree structures. The designed hierarchical structure is likely to be completely corrupted due to the missing or inaccurate prediction of landmarks. To the best of our knowledge, in the context of deep learning, no work before has investigated how to automatically model proper structures for facial landmarks, by discovering their inherent relations. In this paper, we propose a novel Hierarchical Structured Landmark Ensemble (HSLE) model for learning robust facial landmark detection, by using it as the structural constraints. Different from existing approaches of manually designing structures, our proposed HSLE model is constructed automatically via discovering the most robust patterns so HSLE has the ability to robustly depict both local and holistic landmark structures simultaneously. Our proposed HSLE can be readily plugged into any existing facial landmark detection baselines for further performance improvement. Extensive experimental results demonstrate our approach significantly outperforms the baseline by a large margin to achieve a state-of-the-art performance.more » « less
-
Not all people are equally easy to identify: color statistics might be enough for some cases while others might re- quire careful reasoning about high- and low-level details. However, prevailing person re-identification(re-ID) meth- ods use one-size-fits-all high-level embeddings from deep convolutional networks for all cases. This might limit their accuracy on difficult examples or makes them needlessly ex- pensive for the easy ones. To remedy this, we present a new person re-ID model that combines effective embeddings built on multiple convolutional network layers, trained with deep-supervision. On traditional re-ID benchmarks, our method improves substantially over the previous state-of- the-art results on all five datasets that we evaluate on. We then propose two new formulations of the person re- ID problem under resource-constraints, and show how our model can be used to effectively trade off accuracy and computation in the presence of resource constraints.more » « less