- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Lee, Yong Jae (4)
-
Zou, Xueyan (4)
-
Xiao, Fanyi (2)
-
Yu, Zhiding (2)
-
Behl, Harkirat (1)
-
Dai, Xiyang (1)
-
Dou, Zi-Yi (1)
-
Gan, Zhe (1)
-
Gao, Jianfeng (1)
-
Li, Chunyuan (1)
-
Li, Linjie (1)
-
Li, Yuheng (1)
-
Liu, Ding (1)
-
Peng, Nanyun (1)
-
Wang, Jianfeng (1)
-
Wang, Lijuan (1)
-
Yang, Jianwei (1)
-
Yang, Linjie (1)
-
Yuan, Lu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zou, Xueyan; Xiao, Fanyi; Yu, Zhiding; Li, Yuheng; Lee, Yong Jae (, International Journal of Computer Vision)Aliasing refers to the phenomenon that high frequency signals degenerate into completely different ones after sampling. It arises as a problem in the context of deep learning as downsampling layers are widely adopted in deep architectures to reduce parameters and computation. The standard solution is to apply a lowpass filter (e.g., Gaussian blur) before downsampling. However, it can be suboptimal to apply the same filter across the entire content, as the frequency of feature maps can vary across both spatial locations and feature channels. To tackle this, we propose an adaptive content-aware low-pass filtering layer, which predicts separate filter weights for each spatial location and channel group of the input feature maps. We investigate the effectiveness and generalization of the proposed method across multiple tasks, including image classification, semantic segmentation, instance segmentation, video instance segmentation, and image-to-image translation. Both qualitative and quantitative results demonstrate that our approach effectively adapts to the different feature frequencies to avoid aliasing while preserving useful information for recognition. Code is available at https://maureenzou.github.io/ddac/more » « less
-
Zou, Xueyan; Yang, Linjie; Liu, Ding; Lee, Yong Jae (, IEEE Conference on Computer Vision and Pattern Recognition (CVPR))null (Ed.)
-
Zou, Xueyan; Xiao, Fanyi; Yu, Zhiding; Lee, Yong Jae (, BMVC)null (Ed.)
An official website of the United States government

Full Text Available