skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zou, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Winds in the nighttime upper thermosphere are often observed to mimic the ionospheric plasma convection at polar latitudes, and whether the same is true for the daytime winds remains unclear. The dayside sector is subject to large temperature gradient set up by solar irradiance and it also contains the cusp, which is a hotspot of Poynting flux and a region with the strongest soft particle precipitation. We examine daytime winds using a Scanning Doppler Imager (SDI) located at the South Pole, and investigate their distribution under steadily positive and negative IMF Byconditions. The results show that daytime winds exhibit significant differences from the plasma convection. Under negative IMF Byconditions, winds flow in the same direction as the plasma zonally, but have a meridional component that is strongest in the auroral zone. As a result, winds are more poleward-directed than the plasma convection within the auroral zone, and more westward-directed in the polar cap. Under positive IMF Byconditions, winds can flow zonally against the plasma in certain regions. For instance, they flow westward in the polar cap despite the eastward plasma convection there, forming a large angle relative to the plasma convection. The results indicate that ion drag may not be the most dominant force for daytime winds. Although the importance of various forcing terms cannot be resolved with the utilized dataset, we speculate that the pressure gradient force in the presence of cusp heating serves as one important contributor.

     
    more » « less
    Free, publicly-accessible full text available July 10, 2025
  2. Abstract

    High‐latitude neutral winds have a number of drivers, both from solar and magnetospheric origins. Because of this, the neutral wind response to changes in ionospheric convection is not well understood. Previous calculations of response times resulted in a wide range of responses, from tens of minutes to hours. We present a new weighted windowed time‐lagged correlation (weighted WTLC) method for calculating the neutral wind response time. This method provides a time evolution of the neutral wind response time and considers the effects of all thermospheric forces, while previous methods were only capable of one or the other. We use data from SDIs, ASIs, and PFISR to calculate the neutral wind response time using this new method in three case studies. The results are visually validated, and the weighted WTLC method was able to correctly calculate the neutral wind response time. The time evolution of the weighted WTLC time is then compared to previous neutral wind response time calculations in order to investigate the role of ion‐drag on neutral winds. For the substorm event on 2013 Feb 28, we see a shorter response time from the weighted WTLC method, ranging from 0 to 15 min, than the e‐folding time, ranging from 30 to 355 min. The relationship between the two calculation methods and their implications about the ion‐drag force is discussed. Using the time‐dependent feature of the weighted WTLC method, we observe the neutral wind response time decrease over the course of a substorm event, indicating ion‐neutral coupling increased as the substorm progressed.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. Abstract

    Flux transfer events (FTEs) are a type of magnetospheric phenomena that exhibit distinctive observational signatures from the in situ spacecraft measurements. They are generally believed to possess a magnetic field configuration of a magnetic flux rope and formed through magnetic reconnection at the dayside magnetopause, sometimes accompanied with enhanced plasma convection in the ionosphere. We examine two FTE intervals under the condition of southward interplanetary magnetic field (IMF) with a dawn‐dusk component. We apply the Grad‐Shafranov (GS) reconstruction method to the in situ measurements by the Magnetospheric Multiscale (MMS) spacecraft to derive the magnetic flux contents associated with the FTE flux ropes. In particular, given a cylindrical magnetic flux rope configuration derived from the GS reconstruction, the magnetic flux content can be characterized by both the toroidal (axial) and poloidal fluxes. We then estimate the amount of magnetic flux (i.e., the reconnection flux) encompassed by the area “opened” in the ionosphere, based on the ground‐based Super Dual Auroral Radar Network (SuperDARN) observations. We find that for event 1, the FTE flux rope is oriented in the approximate dawn‐dusk direction, and the amount of its total poloidal magnetic flux falls within the range of the corresponding reconnection flux. For event 2, the FTE flux rope is oriented in the north‐south direction. Both the FTE flux and the reconnection flux have greater uncertainty. We provide a detailed description about a formation scenario of sequential magnetic reconnection between adjacent field lines based on the FTE flux rope configurations from our results.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  4. Abstract

    This study presents observations of magnetopause reconnection and erosion at geosynchronous orbit, utilizing in situ satellite measurements and remote sensing ground‐based instruments. During the main phase of a geomagnetic storm, Geostationary Operational Environmental Satellites (GOES) 15 was on the dawnside of the dayside magnetopause (10.6 MLT) and observed significant magnetopause erosion, while GOES 13, observing duskside (14.6 MLT), remained within the magnetosphere. Combined observations from the THEMIS satellites and Super Dual Auroral Radar Network radars verified that magnetopause erosion was primarily caused by reconnection. While various factors may contribute to asymmetric erosion, the observations suggest that the weak reconnection rate on the duskside can play a role in the formation of asymmetric magnetopause shape. This discrepancy in reconnection rate is associated with the presence of cold dense plasma on the duskside of the magnetosphere, which limits the reconnection rate by mass loading, resulting in more efficient magnetopause erosion on the dawnside.

     
    more » « less
    Free, publicly-accessible full text available March 16, 2025
  5. Flow channels can extend across the polar cap from the dayside to the nightside auroral oval, where they lead to localized reconnection and auroral oval disturbances. Such flow channels can persist within the polar cap >1½ hours, can move azimuthally with direction controlled by IMF By, and may affect time and location of auroral oval disturbances. We have followed a polar cap arc as it moved duskward from Canada to Alaska for ∼2 h while connected to the oval. Two-dimensional ionospheric flows show an adjacent flow channel that moved westward with the arc and was a distinct feature of polar cap convection that locally impinged upon the outer boundary of the auroral oval. The flow channel’s interaction with the oval appears to have triggered two separate substorms during its trip across western Canada and Alaska, controlling the onset location and contributing to subsequent development of substorm activity within the oval. The first substorm (over Canada) occurred during approximately equatorward polar cap flow, whereas the second substorm (over Alaska) occurred as the polar cap arc and flow channel bent strongly azimuthally and appeared to “lay down” along the poleward boundary. The oval became unusually thin, leading to near contact between the polar cap arc and the brightening onset auroral arc within the oval. These observations illustrate the crucial role of polar cap flow channels in the time, location, and duration of space weather activity, and the importance of the duration and azimuthal motion of flow channels within the nightside polar cap.

     
    more » « less
    Free, publicly-accessible full text available January 22, 2025
  6. Abstract

    Energetic electron precipitation (EEP) during substorms significantly affects ionospheric chemistry and lower‐ionosphere (<100 km) conductance. Two mechanisms have been proposed to explain what causes EEP: whistler‐mode wave scattering, which dominates at low latitudes (mapping to the inner magnetosphere), and magnetic field‐line curvature scattering, which dominates poleward. In this case study, we analyzed a substorm event demonstrating the dominance of curvature scattering. Using ELFIN, POES, and THEMIS observations, we show that 50–1,000 keV EEP was driven by curvature scattering, initiated by an intensification and subsequent earthward motion of the magnetotail current sheet. Using a combination of Swarm, total electron content, and ELFIN measurements, we directly show the location of EEP with energies up to ∼1 MeV, which extended from the plasmapause to the near‐Earth plasma sheet (PS). The impact of this strong substorm EEP on ionospheric ionization is also estimated and compared with precipitation of PS (<30 keV) electrons.

     
    more » « less
  7. Introduction: Magnetopause reconnection is known to impact the dayside ionosphere by driving fast ionospheric flows, auroral transients, and high-density plasma structures named polar cap patches. However, most of the observed reconnection impact is limited to one hemisphere, and a question arises as to how symmetric the impact is between hemispheres. Methods: We address the question using interhemispheric observations of poleward moving radar auroral forms (PMRAFs), which are a “fossil” signature of magnetopause reconnection, during a geomagnetic storm. We are particularly interested in the temporal repetition and spatial structure of PMRAFs, which are directly affected by the temporal and spatial variation of magnetopause reconnection. PMRAFs are detected and traced using SuperDARN complemented by DMSP, Swarm, and GPS TEC measurements. Results: The results show that PMRAFs occurred repetitively on time scales of about 10 min. They were one-to-one related to pulsed ionospheric flows, and were collocated with polar cap patches embedded in a Tongue of Ionization. The temporal repetition of PMRAFs exhibited a remarkably high degree of correlation between hemispheres, indicating that PMRAFs were produced at a similar rate, or even in close synchronization, in the two hemispheres. However, the spatial structure exhibited significant hemispherical asymmetry. In the Northern Hemisphere, PMRAFs/patches had a dawn-dusk elongated cigar shape that extended >1,000 km, at times reaching >2,000 km, whereas in the Southern Hemisphere, PMRAFs/patches were 2–3 times shorter. Conclusion: The interesting symmetry and asymmetry of PMRAFs suggests that both magnetopause reconnection and local ionospheric conditions play important roles in determining the degree of symmetry of PMRAFs/patches. 
    more » « less
  8. Abstract

    Sub‐auroral polarization streams (SAPS) are one of the most intense manifestations of magnetosphere‐ionosphere coupling. Magnetospheric energy transport to the ionosphere within SAPS is associated with Poynting flux and the precipitation of thermal energy (0.03–30 keV) plasma sheet particles. However, much less is known about the precipitation of high‐energy (≥50 keV) ions and electrons and their contribution to the low‐altitude SAPS physics. This study examines precipitation within one SAPS event using a combination of equatorial THEMIS and low‐altitude DMSP and ELFIN observations, which, jointly, cover from a few eV up to a few MeV energy range. Observed SAPS are embedding the ion isotropy boundary, which includes strong 300–1,000 keV ion precipitation. SAPS are associated with intense precipitation of relativistic electrons (≤3 MeV), well equatorward of the electron isotropy boundary. Such relativistic electron precipitation is likely due to electron scattering by electromagnetic ion cyclotron waves at the equator.

     
    more » « less
  9. Dynamic mesoscale flow structures move across the open field line regions of the polar caps and then enter the nightside plasma sheet where they can cause important space weather disturbances, such as streamers, substorms, and omega bands. The polar cap structures have long durations (apparently at least ∼1½ to 2 h), but their connections to disturbances have received little attention. Hence, it will be important to uncover what causes these flow enhancement channels, how they map to the magnetospheric and magnetosheath structures, and what controls their propagation across the polar cap and their dynamic effects after reaching the nightside auroral oval. The examples presented here use 630-nm auroral and radar observations and indicate that the motion of flow channels could be critical for determining when and where a particular disturbance within the nightside auroral oval will be triggered, and this could be included for full understanding of flow channel connections to disturbances. Also, it is important to determine how polar cap flow channels lead to flow channels within the auroral oval, i.e., the plasma sheet, and determine the conditions along nightside oval/plasma sheet field lines that interact with an incoming polar cap flow channel to cause a particular disturbance. It will also be interesting to consider the generality of geomagnetic disturbances being related to connections with incoming polar cap flow channels, including the location, time, and type of disturbances, and whether the duration and expansion of disturbances are related to flow channel duration and to multiple flow channels. 
    more » « less