skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zussman, Gil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. —We consider a decentralized wireless network with several source-destination pairs sharing a limited number of orthogonal frequency bands. Sources learn to adapt their transmissions (specifically, their band selection strategy) over time, in a decentralized manner, without sharing information with each other. Sources can only observe the outcome of their own transmissions (i.e., success or collision), having no prior knowledge of the network size or of the transmission strategy of other sources. The goal of each source is to maximize their own throughput while striving for network-wide fairness. We propose a novel fully decentralized Reinforcement Learning (RL)-based solution that achieves fairness without coordination. The proposed Fair Share RL(FSRL)solution combines: (i) state augmentation with a semiadaptive time reference; (ii) an architecture that leverages risk control and time difference likelihood; and (iii) a fairness-driven reward structure. We evaluate FSRL in more than 50 network settings with different number of agents, different amounts of available spectrum, in the presence of jammers, and in an ad-hoc setting. Simulation results suggest that, when we compare FSRL with a common baseline RL algorithm from the literature, FSRL can be up to 89.0% fairer (as measured by Jain’s fairness index) in stringent settings with several sources and a single frequency band, and 48.1% fairer on average. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Free, publicly-accessible full text available May 6, 2026
  4. Free, publicly-accessible full text available December 4, 2025
  5. Graph signal processing (GSP) has emerged as a powerful tool for practical network applications, including power system monitoring. Recent research has focused on developing GSP-based methods for state estimation, attack detection, and topology identification using the representation of the power system voltages as smooth graph signals. Within this framework, efficient methods have been developed for detecting false data injection (FDI) attacks, which until now were perceived as nonsmooth with respect to the graph Laplacian matrix. Consequently, these methods may not be effective against smooth FDI attacks. In this paper, we propose a graph FDI (GFDI) attack that minimizes the Laplacian-based graph total variation (TV) under practical constraints. We present the GFDI attack as the solution for a non-convex constrained optimization problem. The solution to the GFDI attack problem is obtained through approximating it using ℓ1 relaxation. A series of quadratic programming problems that are classified as convex optimization problems are solved to obtain the final solution. We then propose a protection scheme that identifies the minimal set of measurements necessary to constrain the GFDI output to a high graph TV, thereby enabling its detection by existing GSP-based detectors. Our numerical simulations on the IEEE-57 and IEEE-118 bus test cases reveal the potential threat posed by well-designed GSP-based FDI attacks. Moreover, we demonstrate that integrating the proposed protection design with GSP-based detection can lead to significant hardware cost savings compared to previous designs of protection methods against FDI attacks. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  6. Free, publicly-accessible full text available December 4, 2025
  7. Free, publicly-accessible full text available December 4, 2025
  8. In order to enable the simultaneous transmission and reception of wireless signals on the same frequency, a fullduplex (FD) radio must be capable of suppressing the powerful self-interference (SI) signal emitted from the transmitter and picked up by the receiver. Critically, a major bottleneck in wideband FD deployments is the need for adaptive SI cancellation (SIC) that would allow the FD wireless system to achieve strong cancellation across different settings with distinct electromagnetic environments. In this work, we evaluate the performance of an adaptive wideband FD radio in three different locations and demonstrate that it achieves strong SIC in every location across different bandwidths. 
    more » « less
    Free, publicly-accessible full text available December 4, 2025
  9. A simple model for average backscatter power from clutter is developed for indoor RF sensing applications and verified through measurements. A narrowband 28 GHz sounder used a quasi-monostatic radar arrangement with an omnidirectional transmit antenna illuminating an indoor scene and a spinning horn receive antenna less than 1 m away collecting backscattered power as a function of azimuth. Median average backscatter power was found to vary over a 12 dB range, with average power generally decreasing with increasing room size. A deterministic model of average backscattered power dependent on distance to nearest wall and clutter reflection coefficient reproduces observations with 4.0 dB RMS error. 
    more » « less
  10. Free, publicly-accessible full text available October 11, 2025