Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Scalp electroencephalography (EEG) is a neural source signal that is extensively used in neuroengineering due to its non-invasive nature and ease of collection. However, a drawback to the use of EEG is the prevalence of physiological artifacts generated by eye movements and eye blinks that contaminate the brain signals. Previously, we have proposed and validated an H ∞ -based Adaptive Noise Cancellation (ANC) technique for the real-time identification, learning and removal of eye blinks, eye motions, amplitude drifts and recording biases from EEG simultaneously. However, the standard electroocu- lography (EOG) electrode configuration requires four elec- trodes for EOG measurement, which limits its applicability for reduced-channel mobile applications, such as brain-computer interfaces (BCI). Here, we assess multiple configurations with varying number of EOG electrodes and compare the ANC effectiveness of these configurations to the ideal four-electrode configuration. From an analysis of the root mean squared error (RMSE) and differences in signal to noise ratios (SNR) between the ideal four-electrode case and the alternative configurations, it is reported that several three-electrode alternative configu- rations were effective in essentially replicating the ability to remove EOG artifacts in an experimental cohort of ten healthy subjects. For nine subjects, it was shown that only two to three EOG electrodes were needed to achieve similar performance as compared to the four-electrode case. This study demonstrates that the typical four-electrode configuration for EOG recordings for adaptive noise cancellation of ocular artifacts may not be necessary; by using the proposed new EOG configurations it is possible to improve electrode allocation efficiency for EOG measurements in mobile EEG applications.more » « less
-
Brain-Computer Interface (BCI) and Internet of Things (IoT) systems have recently been amalgamated to create BCIoT. Most of the early applications have focused on the healthcare sector, and more recently, in education, virtual reality, smart homes, and smart vehicles, amongst others. While there are many transversal developing stages that can be satisfied by a single system, no common enabling technology or standards exist. These challenges are address in the proposed platform, Brain-eNet. This technology was developed considering the constraints-space defined by BCIoT real-time mobile applications. This is expected to enable the development of BCIoT systems by providing modular hardware and software resources. Two instances of this platform implementation are provided, a motor intent detection for rehabilitation and an emotion recognition system.more » « less
-
The use of scalp electroencephalography (EEG) signals for brain-computer interface (BCI) to control end effectors in real time, while providing mobile capabilities for use at home neurorehabilitation, requires of software and hardware robust solutions. Moreover, to ensure democratized access to these systems, low cost, interoperability, and ease of use are essential. These challenges were addressed in the design, development and validation of the NeuroExo BCI System. As a proof of concept, the system was tested with an exoskeleton system for upper-limb stroke rehabilitation as the end effector.more » « less
An official website of the United States government

Full Text Available