Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, the SDR Pathfinder for Understanding Transient and Noise-level Interference in the Karoo (SPUTNIK) is presented. We describe how a low-cost radio frequency interference (RFI) monitoring system, using solely consumer-off-the-shelf (COTS) components, directly contributes to the analysis efforts of a precision 21[Formula: see text]cm cosmology instrument. A SPUTNIK system overview is provided, as well as a generalized software-defined radio (SDR) internal calibration technique to achieve wideband, [Formula: see text][Formula: see text]dBm-level accuracy and a measured dynamic range of [Formula: see text][Formula: see text]dB.Free, publicly-accessible full text available June 1, 2023
-
ABSTRACT We derive a general formalism for interferometric visibilities, which considers first-order antenna–antenna coupling and assumes steady-state, incident radiation. We simulate such coupling features for non-polarized skies on a compact, redundantly spaced array and present a phenomenological analysis of the coupling features. Contrary to previous studies, we find mutual coupling features manifest themselves at non-zero fringe rates. We compare power-spectrum results for both coupled and non-coupled (noiseless, simulated) data and find coupling effects to be highly dependent on local sidereal time (LST), baseline length, and baseline orientation. For all LSTs, lengths, and orientations, coupling features appear at delays which are outside the foreground ‘wedge’, which has been studied extensively and contains non-coupled astrophysical foreground features. Further, we find that first-order coupling effects threaten our ability to average data from baselines with identical length and orientation. Two filtering strategies are proposed which may mitigate such coupling systematics. The semi-analytic coupling model herein presented may be used to study mutual coupling systematics as a function of LST, baseline length, and baseline orientation. Such a model is not only helpful to the field of 21cm cosmology, but any study involving interferometric measurements, where coupling effects at the level of at least 1 partmore »
-
ABSTRACT The 21 cm hyperfine transition of neutral hydrogen offers a promising probe of the large-scale structure of the universe before and during the Epoch of Reionization (EoR), when the first ionizing sources formed. Bright radio emission from foreground sources remains the biggest obstacle to detecting the faint 21 cm signal. However, the expected smoothness of foreground power leaves a clean window in Fourier space where the EoR signal can potentially be seen over thermal noise. Though the boundary of this window is well defined in principle, spectral structure in foreground sources, instrumental chromaticity, and choice of spectral weighting in analysis all affect how much foreground power spills over into the EoR window. In this paper, we run a suite of numerical simulations of wide-field visibility measurements, with a variety of diffuse foreground models and instrument configurations, and measure the extent of contaminated Fourier modes in the EoR window using a delay-transform approach to estimate power spectra. We also test these effects with a model of the Hydrogen Epoch of Reionization Array (HERA) antenna beam generated from electromagnetic simulations, to take into account further chromatic effects in the real instrument. We find that foreground power spillover is dominated by the so-called pitchforkmore »
-
ABSTRACT We present a Bayesian jackknife test for assessing the probability that a data set contains biased subsets, and, if so, which of the subsets are likely to be biased. The test can be used to assess the presence and likely source of statistical tension between different measurements of the same quantities in an automated manner. Under certain broadly applicable assumptions, the test is analytically tractable. We also provide an open-source code, chiborg, that performs both analytic and numerical computations of the test on general Gaussian-distributed data. After exploring the information theoretical aspects of the test and its performance with an array of simulations, we apply it to data from the Hydrogen Epoch of Reionization Array (HERA) to assess whether different sub-seasons of observing can justifiably be combined to produce a deeper 21 cm power spectrum upper limit. We find that, with a handful of exceptions, the HERA data in question are statistically consistent and this decision is justified. We conclude by pointing out the wide applicability of this test, including to CMB experiments and the H0 tension.
-
Abstract We report the most sensitive upper limits to date on the 21 cm epoch of reionization power spectrum using 94 nights of observing with Phase I of the Hydrogen Epoch of Reionization Array (HERA). Using similar analysis techniques as in previously reported limits, we find at 95% confidence that Δ2(
k = 0.34h Mpc−1) ≤ 457 mK2atz = 7.9 and that Δ2(k = 0.36h Mpc−1) ≤ 3496 mK2atz = 10.4, an improvement by a factor of 2.1 and 2.6, respectively. These limits are mostly consistent with thermal noise over a wide range ofk after our data quality cuts, despite performing a relatively conservative analysis designed to minimize signal loss. Our results are validated with both statistical tests on the data and end-to-end pipeline simulations. We also report updated constraints on the astrophysics of reionization and the cosmic dawn. Using multiple independent modeling and inference techniques previously employed by HERA Collaboration, we find that the intergalactic medium must have been heated above the adiabatic cooling limit at least as early asz = 10.4, ruling out a broad set of so-called “cold reionization” scenarios. If this heating is due to high-mass X-ray binaries during the cosmic dawn, as is generally believed, our result’s 99% credible interval excludes the local relationshipmore » -
Abstract We report upper limits on the Epoch of Reionization 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights of data (∼36 hr of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I data show evidence for systematics that can be largely suppressed with systematic models down to a dynamic range of ∼10 9 with respect to the peak foreground power. This yields a 95% confidence upper limit on the 21 cm power spectrum of Δ 21 2 ≤ ( 30.76 ) 2 mK 2 at k = 0.192 h Mpc −1 at z = 7.9, and also Δ 21 2 ≤ ( 95.74 ) 2 mK 2 at k = 0.256 h Mpc −1 at z = 10.4. At z = 7.9, these limits are the most sensitive to date by over an order of magnitude. While we find evidence for residual systematics at low line-of-sight Fourier k ∥ modes, at high k ∥ modes we find our data to be largely consistent with thermal noise, an indicator that the system could benefit from deeper integrations. The observed systematics could be due to radio frequency interference, cable subreflections, or residualmore »
-
Abstract We describe the validation of the HERA Phase I software pipeline by a series of modular tests, building up to an end-to-end simulation. The philosophy of this approach is to validate the software and algorithms used in the Phase I upper-limit analysis on wholly synthetic data satisfying the assumptions of that analysis, not addressing whether the actual data meet these assumptions. We discuss the organization of this validation approach, the specific modular tests performed, and the construction of the end-to-end simulations. We explicitly discuss the limitations in scope of the current simulation effort. With mock visibility data generated from a known analytic power spectrum and a wide range of realistic instrumental effects and foregrounds, we demonstrate that the current pipeline produces power spectrum estimates that are consistent with known analytic inputs to within thermal noise levels (at the 2 σ level) for k > 0.2 h Mpc −1 for both bands and fields considered. Our input spectrum is intentionally amplified to enable a strong “detection” at k ∼ 0.2 h Mpc −1 —at the level of ∼25 σ —with foregrounds dominating on larger scales and thermal noise dominating at smaller scales. Our pipeline is able to detect this amplifiedmore »
-
null (Ed.)ABSTRACT Precision calibration poses challenges to experiments probing the redshifted 21-cm signal of neutral hydrogen from the Cosmic Dawn and Epoch of Reionization (z ∼ 30–6). In both interferometric and global signal experiments, systematic calibration is the leading source of error. Though many aspects of calibration have been studied, the overlap between the two types of instruments has received less attention. We investigate the sky based calibration of total power measurements with a HERA dish and an EDGES-style antenna to understand the role of autocorrelations in the calibration of an interferometer and the role of sky in calibrating a total power instrument. Using simulations we study various scenarios such as time variable gain, incomplete sky calibration model, and primary beam model. We find that temporal gain drifts, sky model incompleteness, and beam inaccuracies cause biases in the receiver gain amplitude and the receiver temperature estimates. In some cases, these biases mix spectral structure between beam and sky resulting in spectrally variable gain errors. Applying the calibration method to the HERA and EDGES data, we find good agreement with calibration via the more standard methods. Although instrumental gains are consistent with beam and sky errors similar in scale to those simulated,more »