skip to main content

Search for: All records

Creators/Authors contains: "van Deurzen, Len"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multimode lasing at sub-300 nm wavelengths is demonstrated by optical pumping in AlGaN heterostructures grown on single-crystal AlN substrates by plasma-assisted molecular beam epitaxy. Edge-emitting ridge-based Fabry–Pérot cavities are fabricated with the epitaxial AlN/AlGaN double heterostructure by a combined inductively coupled plasma reactive ion etch and tetramethylammonium hydroxide etch. The emitters exhibit peak gain at 284 nm and modal linewidths on the order of 0.1 nm at room temperature. The applied growth technique and its chemical and heterostructural design characteristics offer certain unique capabilities toward further development of electrically injected AlGaN laser diodes.
    Free, publicly-accessible full text available March 1, 2023
  2. Abstract This report classifies emission inhomogeneities that manifest in InGaN quantum well blue light-emitting diodes grown by plasma-assisted molecular beam epitaxy on free-standing GaN substrates. By a combination of spatially resolved electroluminescence and cathodoluminescence measurements, atomic force microscopy, scanning electron microscopy and hot wet potassium hydroxide etching, the identified inhomogeneities are found to fall in four categories. Labeled here as type I through IV, they are distinguishable by their size, density, energy, intensity, radiative and electronic characteristics and chemical etch pits which correlates them with dislocations. Type I exhibits a blueshift of about 120 meV for the InGaN quantum well emission attributed to a perturbation of the active region, which is related to indium droplets that form on the surface in the metal-rich InGaN growth condition. Specifically, we attribute the blueshift to a decreased growth rate of and indium incorporation in the InGaN quantum wells underneath the droplet which is postulated to be the result of reduced incorporated N species due to increased N 2 formation. The location of droplets are correlated with mixed type dislocations for type I defects. Types II through IV are due to screw dislocations, edge dislocations, and dislocation bunching, respectively, and form dark spots duemore »to leakage current and nonradiative recombination.« less
  3. Epitaxial ScxAl1−xN thin films of ∼100 nm thickness grown on metal polar GaN substrates are found to exhibit significantly enhanced relative dielectric permittivity (εr) values relative to AlN. εrvalues of ∼17–21 for Sc mole fractions of 17%–25% ( x = 0.17–0.25) measured electrically by capacitance–voltage measurements indicate that ScxAl1−xN has the largest relative dielectric permittivity of any existing nitride material. Since epitaxial ScxAl1−xN layers deposited on GaN also exhibit large polarization discontinuity, the heterojunction can exploit the in situ high-K dielectric property to extend transistor operation for power electronics and high-speed microwave applications.

    Free, publicly-accessible full text available April 11, 2023