skip to main content

Title: Dislocation and indium droplet related emission inhomogeneities in InGaN LEDs
Abstract This report classifies emission inhomogeneities that manifest in InGaN quantum well blue light-emitting diodes grown by plasma-assisted molecular beam epitaxy on free-standing GaN substrates. By a combination of spatially resolved electroluminescence and cathodoluminescence measurements, atomic force microscopy, scanning electron microscopy and hot wet potassium hydroxide etching, the identified inhomogeneities are found to fall in four categories. Labeled here as type I through IV, they are distinguishable by their size, density, energy, intensity, radiative and electronic characteristics and chemical etch pits which correlates them with dislocations. Type I exhibits a blueshift of about 120 meV for the InGaN quantum well emission attributed to a perturbation of the active region, which is related to indium droplets that form on the surface in the metal-rich InGaN growth condition. Specifically, we attribute the blueshift to a decreased growth rate of and indium incorporation in the InGaN quantum wells underneath the droplet which is postulated to be the result of reduced incorporated N species due to increased N 2 formation. The location of droplets are correlated with mixed type dislocations for type I defects. Types II through IV are due to screw dislocations, edge dislocations, and dislocation bunching, respectively, and form dark spots due to leakage current and nonradiative recombination.  more » « less
Award ID(s):
1719875 1839196
Author(s) / Creator(s):
; ; ; ; ; ; ;  ; ;
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Differential carrier lifetime measurements were performed on c-plane InGaN/GaN single quantum well (QW) light-emitting diodes (LEDs) of different QW indium compositions as well as with and without doped barriers. Mg-doped p-type and Si-doped n-type barriers close to the QW were used to reduce the net internal electric field in the QW, thereby improving the electron–hole wavefunction overlap on the LEDs. LEDs with doped barriers show short lifetimes and low carrier densities in the active region compared to the reference LEDs. The recombination coefficients in the ABC model were estimated based on the carrier lifetime and quantum efficiency measurements. The improvement in the radiative coefficients in the LEDs with doped barriers coupled with the blueshift of the emission wavelengths indeed indicates an enhancement in wavefunction overlap and a reduction of quantum confined Stark effect as a result of the reduced internal electric field. However, doped barriers also introduce non-radiative recombination centers and thereby increase the Shockley–Read–Hall (SRH) coefficient, although the increment is less for LEDs with high indium composition QWs. As a result, at high indium composition (22%), LEDs with doped barriers outperform the reference LEDs even though the trend is reversed for LEDs with lower indium composition (13.5%). Despite the trade-off of higher SRH coefficients, doped barriers are shown to be effective in reducing the internal electric field and increasing the recombination coefficients.

    more » « less
  2. The V-defect is a naturally occurring inverted hexagonal pyramid structure that has been studied in GaN and InGaN growth since the 1990s. Strategic use of V-defects in pre-quantum well superlattices or equivalent preparation layers has enabled record breaking efficiencies for green, yellow, and red InGaN light emitting diodes (LEDs) utilizing lateral injection of holes through the semi-polar sidewalls of the V-defects. In this article, we use advanced characterization techniques such as scattering contrast transmission electron microscopy, high angle annular dark field scanning transmission electron microscopy, x-ray fluorescence maps, and atom probe tomography to study the active region compositions, V-defect formation, and V-defect structure in green and red LEDs grown on (0001) patterned sapphire and (111) Si substrates. We identify two distinct types of V-defects. The “large” V-defects are those that form in the pre-well superlattice and promote hole injection, usually nucleating on mixed (Burgers vector b=±a±c) character threading dislocations. In addition, “small” V-defects often form in the multi-quantum well region and are believed to be deleterious to high-efficiency LEDs by providing non-radiative pathways. The small V-defects are often associated with basal plane stacking faults or stacking fault boxes. Furthermore, we show through scattering contrast transmission electron microscopy that during V-defect filling, the threading dislocation, which runs up the center of the V-defect, will “bend” onto one of the six {101¯1} semi-polar planes. This result is essential to understanding non-radiative recombination in V-defect engineered LEDs.

    more » « less
  3. In this paper, we report the molecular beam epitaxy-grown InGaN-quantum disks embedded within selective area epitaxy of GaN nanowires with both Ga- and N-polarities. A detailed comparative analysis of these two types of nanostructures is also provided. Compared to Ga-polar nanowires, N-polar nanowires are found to exhibit a higher vertical growth rate, flatter top, and reduced lateral overgrowth. InGaN quantum disk-related optical emission is observed from nanowires with both polarities; however, the N-polar structures inherently emit at longer wavelengths due to higher indium incorporation. Considering that N-polar nanowires offer more compelling geometry control compared to Ga-polar ones, we focus on the theoretical analysis of only N-polar structures to realize high-performance quantum emitters. A single nanowire-level analysis was performed, and the effects of nanowire diameter, taper length, and angle on guided modes, light extraction, and far-field emission were investigated. These findings highlight the importance of tailoring nanowire geometry and eventually optimizing the growth processes of III-nitride nanostructures.

    more » « less
  4. Ultra-violet light emitting diodes (UV-LEDs) and lasers based on the III-Nitride material system are very promising since they enable compact, safe, and efficient solid-state sources of UV light for a range of applications. The primary challenges for UV LEDs are related to the poor conductivity of p-AlGaN layers and the low light extraction efficiency of LED structures. Tunnel junction-based UV LEDs provide a distinct and unique pathway to eliminate several challenges associated with UV LEDs1-4. In this work, we present for the first time, a reversed-polarization (p-down) AlGaN based UV-LED utilizing bottom tunnel junction (BTJ) design. We show that compositional grading enables us to achieve the lowest reported voltage drop of 1.1 V at 20 A/cm2 among transparent AlGaN based tunnel junctions at this Al-composition. Compared to conventional LED design, a p-down structure offers lower voltage drop because the depletion barrier for both holes and electrons is lower due to polarization fields aligning with the depletion field. Furthermore, the bottom tunnel junction also allows us to use polarization grading to realize better p- and n-type doping to improve tunneling transport. The epitaxial structure of the UV-LED was grown by plasma-assisted molecular beam epitaxy (PAMBE) on metal-organic chemical vapor deposition (MOCVD)-grown n-type Al0.3Ga0.7N templates. The transparent TJ was grown using graded n++-Al0.3Ga0.7N→ n++-Al0.4Ga0.6N (Si=3×1020 cm-3) and graded p++-Al0.4Ga0.6N →p++-Al0.3Ga0.7N (Mg=1×1020 cm-3) to take advantage of induced 3D polarization charges. The high number of charges at the tunnel junction region leads to lower depletion width and efficient hole injection to the p-type layer. The UV LED active region consists of three 2.5 nm Al0.2Ga0.8N quantum wells and 7 nm Al0.3Ga0.6N quantum barriers followed by 12 nm of p- Al0.46Ga0.64N electron blocking layer (EBL). The active region was grown on top of the tunnel junction. A similar LED with p-up configuration was also grown to compare the electrical performance. The surface morphology examined by atomic force microscopy (AFM) shows smooth growth features with a surface roughness of 1.9 nm. The dendritic features on the surface are characteristic of high Si doping on the surface. The composition of each layer was extracted from the scan by high resolution x-ray diffraction (HR-XRD). The electrical characteristics of a device show a voltage drop of 4.9 V at 20 A/cm2, which corresponds to a tunnel junction voltage drop of ~ 1.1 V. This is the best lowest voltage for transparent 30% AlGaN tunnel junctions to-date and is comparable with the lowest voltage drop reported previously on non-transparent (InGaN-based) tunnel junctions at similar Al mole fraction AlGaN. On-wafer electroluminescence measurements on patterned light-emitting diodes showed single peak emission wavelength of 325 nm at 100 A/cm2 which corresponds to Al0.2Ga0.8N, confirming that efficient hole injection was achieved within the structure. The device exhibits a wavelength shift from 330 nm to 325 nm with increasing current densities from 10A/cm2 to 100A/cm2. In summary, we have demonstrated a fully transparent bottom AlGaN homojunction tunnel junction that enables p-down reversed polarization ultraviolet light emitting diodes, and has very low voltage drop at the tunnel junction. This work could enable new flexibility in the design of future III-Nitride ultraviolet LEDs and lasers. 
    more » « less
  5. Optical properties of InGaN/GaN multi-quantum-well (MQWs) grown on sapphire and on Si(111) are reported. The tensile strain in the MQW on Si is shown to be beneficial for indium incorporation and Quantum-confined Stark Effect reduction in the multi-quantum wells. Raman spectroscopy reveals compressive strains of -0.107% in MQW on sapphire and tensile strain of +0.088% in MQW on Si. Temperature-dependent photoluminescence shows in MQW on sapphire a strong (30 meV peak-to-peak) S-shaped wavelength shift with decreasing temperature (6 K to 300K), whereas MQW on Si luminescence wavelength is stable and red-shifts monotonically. Micro-photoluminescence mapping over 200 by 200 μm2 shows the emission wavelength spatial uniformity of MQW on Si is 2.6 times higher than MQW on sapphire, possibly due to a more uniform indium incorporation in the multi-quantum-wells as a result of the tensile strain in MQW on Si. A positive correlation between emission energy and intensity is observed in MQW on sapphire but not in those on Si. Despite the lower crystal quality of MQW on Si revealed by atomic force microscopy, it exhibits a higher internal quantum efficiency (IQE) than MQW on sapphire from 6 K to 250 K, and equalizes at 300 K. Overall, MQW on Si exhibits a high IQE, higher wavelength spatial uniformity and temperature stability, while providing a much more scalable platform than MQW on sapphire for next generation integrated photonics. 
    more » « less