skip to main content


Search for: All records

Creators/Authors contains: "van Renesse, Robbert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In distributed systems, a group of learners achieve consensus when, by observing the output of some acceptors, they all arrive at the same value. Consensus is crucial for ordering transactions in failure-tolerant systems. Traditional consensus algorithms are homogeneous in three ways: (1) all learners are treated equally, (2) all acceptors are treated equally, and (3) all failures are treated equally.These assumptions, however, are unsuitable for cross-domain applications, including blockchains, where not all acceptors are equally trustworthy, and not all learners have the same assumptions and priorities. We present the first algorithm to be heterogeneous in all three respects. Learners set their own mixed failure tolerances over differently trusted sets of acceptors. We express these assumptions in a novel Learner Graph, and demonstrate sufficient conditions for consensus. We present Heterogeneous Paxos, an extension of Byzantine Paxos. Heterogeneous Paxos achieves consensus for any viable Learner Graph in best-case three message sends, which is optimal. We present a proof-of-concept implementation and demonstrate how tailoring for heterogeneous scenarios can save resources and reduce latency. 
    more » « less
  2. The shared log paradigm is at the heart of modern distributed applications in the growing cloud computing industry. Often, application logs must be stored durably for analytics, regulations, or failure recovery, and their smooth operation depends closely on how the log is implemented. Scalog is a new implementation of the shared log abstraction that offers an unprecedented combination of features for continuous smooth delivery of service: Scalog allows applications to customize data placement, supports reconfiguration with no loss in availability, and recovers quickly from failures. At the same time, Scalog provides high throughput and total order. The paper describes the design and implementation of Scalog and presents examples of applications running upon it. To evaluate Scalog at scale, we use a combination of real experiments and emulation. Using 4KB records, a 10 Gbps infrastructure, and SSDs, Scalog can totally order up to 52 million records per second. 
    more » « less
  3. Blockchain-based cryptocurrencies have demonstrated how to securely implement traditionally centralized systems, such as currencies, in a decentralized fashion. However, there have been few measurement studies on the level of decentralization they achieve in practice. We present a measurement study on various decentralization metrics of two of the leading cryptocurrencies with the largest market capitalization and user base, Bitcoin and Ethereum. We investigate the extent of decentralization by measuring the network resources of nodes and the interconnection among them, the protocol requirements affecting the operation of nodes, and the robustness of the two systems against attacks. In particular, we adapted existing internet measurement techniques and used the Falcon Relay Network as a novel measurement tool to obtain our data. We discovered that neither Bitcoin nor Ethereum has strictly better properties than the other. We also provide concrete suggestions for improving both systems. 
    more » « less