Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Significant obstacles exist in scientific domains including genetics, climate modeling, and astronomy due to the management, preprocess, and training on complicated data for deep learning. Even while several large-scale solutions offer distributed execution environments, open-source alternatives that integrate scalable runtime tools, deep learning and data frameworks on high-performance computing platforms remain crucial for accessibility and flexibility. In this paper, we introduce Deep Radical-Cylon(RC), a heterogeneous runtime system that combines data engineering, deep learning frameworks, and workflow engines across several HPC environments, including cloud and supercomputing infrastructures. Deep RC supports heterogeneous systems with accelerators, allows the usage of communication libraries like MPI, GLOO and NCCL across multi-node setups, and facilitates parallel and distributed deep learning pipelines by utilizing Radical Pilot as a task execution framework. By attaining an end-to-end pipeline including preprocessing, model training, and postprocessing with 11 neural forecasting models (PyTorch) and hydrology models (TensorFlow) under identical resource conditions, the system reduces 3.28 and 75.9 seconds, respectively. The design of Deep RC guarantees the smooth integration of scalable data frameworks, such as Cylon, with deep learning processes, exhibiting strong performance on cloud platforms and scientific HPC systems. By offering a flexible, high-performance solution for resource-intensive applications, this method closes the gap between data preprocessing, model training, and postprocessing.more » « lessFree, publicly-accessible full text available June 7, 2026
-
Free, publicly-accessible full text available December 21, 2025
-
The data engineering and data science community has embraced the idea of using Python and R dataframes for regular applications. Driven by the big data revolution and artificial intelligence, these frameworks are now ever more important in order to process terabytes of data. They can easily exceed the capabilities of a single machine but also demand significant developer time and effort due to their convenience and ability to manipulate data with high-level abstractions that can be optimized. Therefore it is essential to design scalable dataframe solutions. There have been multiple efforts to be integrated into the most efficient fashion to tackle this problem, the most notable being the dataframe systems developed using distributed computing environments such as Dask and Ray. Even though Dask and Ray's distributed computing features look very promising, we perceive that the Dask Dataframes and Ray Datasets still have room for optimization In this paper, we present CylonFlow, an alternative distributed dataframe execution methodology that enables state-of-the-art performance and scalability on the same Dask and Ray infrastructure (superchargingthem!). To achieve this, we integrate ahigh-performance dataframesystem Cylon, which was originally based on an entirely different execution paradigm, into Dask and Ray. Our experiments show that on a pipeline of dataframe operators, CylonFlow achieves 30 × more distributed performance than Dask Dataframes. Interestingly, it also enables superior sequential performance due to leveraging the native C++ execution of Cylon. We believe the performance of Cylon in conjunction with CylonFlow extends beyond the data engineering domain and can be used to consolidate high-performance computing and distributed computing ecosystems.more » « less
An official website of the United States government
