skip to main content


Search for: All records

Creators/Authors contains: "Doney, S. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ocean-based carbon dioxide (CO 2 ) removal (CDR) strategies are an important part of the portfolio of approaches needed to achieve negative greenhouse gas emissions. Many ocean-based CDR strategies rely on injecting CO 2 or organic carbon (that will eventually become CO 2 ) into the ocean interior, or enhancing the ocean’s biological pump. These approaches will not result in permanent sequestration, because ocean currents will eventually return the injected CO 2 back to the surface, where it will be brought into equilibrium with the atmosphere. Here, a model of steady state global ocean circulation and mixing is used to assess the time scales over which CO 2 injected in the ocean interior remains sequestered from the atmosphere. There will be a distribution of sequestration times for any single discharge location due to the infinite number of pathways connecting a location at depth with the sea surface. The resulting probability distribution is highly skewed with a long tail of very long transit times, making mean sequestration times much longer than typical time scales. Deeper discharge locations will sequester purposefully injected CO 2 much longer than shallower ones and median sequestration times are typically decades to centuries, and approach 1000 years in the deep North Pacific. Large differences in sequestration times occur both within and between the major ocean basins, with the Pacific and Indian basins generally having longer sequestration times than the Atlantic and Southern Oceans. Assessments made over a 50 year time horizon illustrates that most of the injected carbon will be retained for injection depths greater than 1000 m, with several geographic exceptions such as the Western North Atlantic. Ocean CDR strategies that increase upper ocean ecosystem productivity with the goal of exporting more carbon to depth will have mainly a short-term influence on atmospheric CO 2 levels because ∼70% will be transported back to the surface ocean within 50 years. The results presented here will help plan appropriate ocean CDR strategies that can help limit climate damage caused by fossil fuel CO 2 emissions. 
    more » « less
  2. Abstract

    Recent research has quantified the contributions of CO2and CH4emissions traced to the products of major fossil fuel companies and cement manufacturers to global atmospheric CO2, surface temperature, and sea level rise. This work has informed societal considerations of the climate responsibilities of these major industrial carbon producers. Here, we extend this work to historical (1880–2015) and recent (1965–2015) acidification of the world’s ocean. Using an energy balance carbon-cycle model, we find that emissions traced to the 88 largest industrial carbon producers from 1880–2015 and 1965–2015 have contributed ∼55% and ∼51%, respectively, of the historical 1880–2015 decline in surface ocean pH. As ocean acidification is not spatially uniform, we employ a three-dimensional ocean model and identify five marine regions with large declines in surface water pH and aragonite saturation state over similar historical (average 1850–1859 to average 2000–2009) and recent (average 1960–1969 to average of 2000–2009) time periods. We characterize the biological and socioeconomic systems in these regions facing loss and damage from ocean acidification in the context of climate change and other stressors. Such analysis can inform societal consideration of carbon producer responsibility for current and near-term risks of further loss and damage to human communities dependent on marine ecosystems and fisheries vulnerable to ocean acidification.

     
    more » « less
  3. Abstract

    The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4using an ensemble of global gap‐filled observation‐based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2in both observational products and models, but the magnitude of the median net global coastal uptake is ∼60% larger in models (−0.72 vs. −0.44 PgC year−1, 1998–2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model‐product difference to the seasonality in sea surface CO2partial pressure at mid‐ and high‐latitudes, where models simulate stronger winter CO2uptake. The coastal ocean CO2sink has increased in the past decades but the available time‐resolving observation‐based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2‐e year−1in observational product and +0.54 PgCO2‐e year−1in model median) and CH4(+0.21 PgCO2‐e year−1in observational product), which offsets a substantial proportion of the coastal CO2uptake in the net radiative balance (30%–60% in CO2‐equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate.

     
    more » « less
  4. Abstract

    The ocean coastal‐shelf‐slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically productive region that could potentially act as a large sink of atmospheric carbon dioxide. The duration of the sea‐ice season in the WAP shows large interannual variability. However, quantifying the mechanisms by which sea ice impacts biological productivity and surface dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the phytoplankton growth season. In this study, we implemented a circulation, sea‐ice, and biogeochemistry model (MITgcm‐REcoM2) to study the effect of sea ice on phytoplankton blooms and surface DIC. Results were compared with satellite sea‐ice and ocean color, and research ship surveys from the Palmer Long‐Term Ecological Research (LTER) program. The simulations suggest that the annual sea‐ice cycle has an important role in the seasonal DIC drawdown. In years of early sea‐ice retreat, there is a longer growth season leading to larger seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO2. Despite lower seasonal NPP, years of late sea‐ice retreat show larger DIC drawdown, attributed to lower air‐sea CO2fluxes and increased dilution by sea‐ice melt. The role of dissolved iron and iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The model results suggest sediments and glacial meltwater are the main sources in the coastal and shelf regions, with sediments being more influential in the northern coast.

     
    more » « less
  5. Abstract. Significant rates of primary production occur in the oligotrophic ocean, without any measurable nutrients present in the mixed layer, fueling a scientific paradox that has lasted for decades. Here, we provide a new determination of the annual mean physical supply of nitrate to the euphotic zone in the western subtropical North Atlantic. We combine a 3-year time series of measurements of tritiugenic 3He from 2003 to 2006 in the surface ocean at the Bermuda Atlantic Time-series Study (BATS) site with a sophisticated noble gas calibrated air–sea gas exchange model to constrain the 3He flux across the sea–air interface, which must closely mirror the upward 3He flux into the euphotic zone. The product of the 3He flux and the observed subsurface nitrate–3He relationship provides an estimate of the minimum rate of new production in the BATS region. We also apply the gas model to an earlier time series of 3He measurements at BATS in order to recalculate new production fluxes for the 1985 to 1988 time period. The observations, despite an almost 3-fold difference in the nitrate–3He relationship, yield a roughly consistent estimate of nitrate flux. In particular, the nitrate flux from 2003 to 2006 is estimated to be 0.65 ± 0.14 mol m−2 yr−1, which is ~40 % smaller than the calculated flux for the period from 1985 to 1988. The difference in nitrate flux between the time periods may be signifying a real difference in new production resulting from changes in subtropical mode water formation. Overall, the nitrate flux is larger than most estimates of export fluxes or net community production fluxes made locally for the BATS site, which is likely a reflection of the larger spatial scale covered by the 3He technique and potentially also by the decoupling of 3He and nitrate during the obduction of water masses from the main thermocline into the upper ocean. The upward nitrate flux is certainly large enough to support observed rates of primary production at BATS and more generally in the oligotrophic subtropical ocean. 
    more » « less
  6. Abstract

    The Southern Ocean is chronically undersampled due to its remoteness, harsh environment, and sea ice cover. Ocean circulation models yield significant insight into key processes and to some extent obviate the dearth of data; however, they often underestimate surface mixed layer depth (MLD), with consequences for surface water‐column temperature, salinity, and nutrient concentration. In this study, a coupled circulation and sea ice model was implemented for the region adjacent to the West Antarctic Peninsula, a climatically sensitive region which has exhibited decadal trends towards higher ocean temperature, shorter sea ice season, and increasing glacial freshwater input, overlain by strong interannual variability. Hindcast simulations were conducted with different air‐ice drag coefficients and Langmuir circulation parameterizations to determine the impact of these factors on MLD. Including Langmuir circulation deepened the surface mixed layer, with the deepening being more pronounced in the shelf and slope regions. Optimal selection of an air‐ice drag coefficient also increased modeled MLD by similar amounts and had a larger impact in improving the reliability of the simulated MLD interannual variability. This study highlights the importance of sea ice volume and redistribution to correctly reproduce the physics of the underlying ocean, and the potential of appropriately parameterizing Langmuir circulation to help correct for biases towards shallow MLD in the Southern Ocean. The model also reproduces observed freshwater patterns in the West Antarctic Peninsula during late summer and suggests that areas of intense summertime sea ice melt can still show net annual freezing due to high sea ice formation during the winter.

     
    more » « less