skip to main content


Search for: All records

Creators/Authors contains: "Fejer, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Blistering is a phenomenon sometimes observed in sputtered-deposited thin films but seldom investigated in detail. Here, we consider the case of titania-doped germania (TGO)/silica multi-layers deposited by ion beam sputtering. TGO is a candidate as high refractive index material in the Bragg mirrors for the next iteration of gravitational waves detectors. It needs to be annealed at 600°C for 100h in order to reach the desired relaxation state. However under some growth conditions, in 52-layer TGO/silica stacks, blistering occurs upon annealing at a temperature near 500°C, which corresponds to the temperature where Ar desorbs from TGO. In order to better understand the blistering phenomenon, we measure the Ar transport in single layers of TGO and silica. In the case of <1 μm-thick TGO layers, the Ar desorption is mainly limited by detrapping. The transport model also correctly predicts the evolution of the total amount of Ar in a 8.5 μm stack of TGO and silica layers annealed at 450°C, but in that case, the process is mainly limited by diffusion. Since Ar diffusion is an order of magnitude slower in TGO compared to silica, we observe a correspondingly strong accumulation of Ar in TGO. The Ar transport model is used to explain some regimes of the blisters growth, and we find indications that Ar accumulation is a driver for their growth in general, but the blisters nucleation remains a complex phenomenon influenced by several other factors including stress, substrate roughness, and impurities.

     
    more » « less
  2. Optical parametric amplification is one of the most flexible approaches for generating coherent light at long wavelengths, but typical implementations require prohibitively large pump pulse energies to realize useful amounts of gain. In this work, we experimentally demonstrate an approach to optical parametric amplification in which an interplay between parametric gain and symmetric temporal walk-off confines the non-degenerate signal and idler to form a three-wave soliton. Gain-trapped solitons propagate stably over arbitrarily long interaction lengths, which reduces the energy required for high-gain operation by orders of magnitude. The devices demonstrated here realize large parametric gains (>70dB) with only picojoules of pump pulse energy in a 5-mm-long thin-film lithium niobate on sapphire nanowaveguide. In addition, we observe an array of desirable features including high conversion efficiencies (>50%), wide tuning ranges (>100nm), and broad spectral bandwidths (>180nm 3 dB for the 3200-nm idler). When combined with the dispersion engineering available in tightly confining nanowaveguides, this approach enables high-gain optical parametric amplifiers operating at any wavelength.

     
    more » « less
  3. Free, publicly-accessible full text available August 1, 2024
  4. Mid-infrared spectroscopy, an important technique for sensing molecules, has encountered barriers from sources either limited in tuning range or excessively bulky for widespread use. We present a compact, efficient, and broadly tunable optical parametric oscillator surmounting these challenges. Leveraging dispersion-engineered thin-film lithium niobate-on-sapphire photonics and a singly resonant cavity allows broad, controlled tuning over an octave from 1.5–3.3 µm. The device generates >25mW of mid-infrared light at 3.2 µm with 15% conversion efficiency. The ability to precisely control the device’s mid-infrared emission enables spectroscopy of methane and ammonia, demonstrating our approach’s relevance for sensing. Our work signifies an important advance in nonlinear photonics miniaturization, bringing practical field applications of high-speed, broadband mid-infrared spectroscopy closer to reality.

     
    more » « less
  5. Abstract

    The quantum noise of light, attributed to the random arrival time of photons from a coherent light source, fundamentally limits optical phase sensors. An engineered source of squeezed states suppresses this noise and allows phase detection sensitivity beyond the quantum noise limit (QNL). We need ways to use quantum light within deployable quantum sensors. Here we present a photonic integrated circuit in thin-film lithium niobate that meets these requirements. We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics. Using 26.2 milliwatts of optical power, we measure (2.7 ± 0.2)% squeezing and apply it to increase the signal-to-noise ratio of phase measurement. We anticipate that photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.

     
    more » « less
  6. Synchronously pumped optical parametric oscillators (OPOs) are highly efficient sources of long-wavelength pulses and nonclassical light, making them invaluable for applications in spectroscopy, metrology, multi-photon microscopy, and quantum computation. Typical systems based on free-space cavities either operate non-degenerately, which limits their efficiency, or use active feedback control to achieve degenerate operation, which limits these systems to dedicated low-noise environments. In this work, we demonstrate a femtosecond monolithically integrated OPO. In contrast with bulk OPOs, our monolithic 10 GHz cavity, based on reverse-proton-exchanged lithium niobate, operates stably without active locking. By detuning the repetition rate of the free-running pump laser from the cavity free spectral range, we control the intracavity pulse dynamics and observe many of the operating regimes previously encountered in free-space degenerate OPOs, such as box-pulsing and quadratic bright-dark solitons (simultons), in addition to non-degenerate operation. When operated in the simulton regime and pumped with 125 fs pulses at 1 µm, this monolithic OPO chip outputs broadband sech2pulses (63 nm, 3 dB) with tens of milliwatts of average power.

     
    more » « less
  7. BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results in a rather limited spectral coverage. To overcome this limitation, nonlinear frequency-mixing strategies have been developed. These approaches shift the complexity from the EM source to nonresonant-based material effects. Particularly in the optical regime, a wealth of materials exist that support effects that are suitable for frequency mixing. Over the past two decades, the idea of manipulating these materials to form guiding structures (waveguides) has provided improvements in efficiency, miniaturization, and production scale and cost and has been widely implemented for diverse applications. ADVANCES Lithium niobate, a crystal that was first grown in 1949, is a particularly attractive photonic material for frequency mixing because of its favorable material properties. Bulk lithium niobate crystals and weakly confining waveguides have been used for decades for accessing different parts of the EM spectrum, from gigahertz to petahertz frequencies. Now, this material is experiencing renewed interest owing to the commercial availability of thin-film lithium niobate (TFLN). This integrated photonic material platform enables tight mode confinement, which results in frequency-mixing efficiency improvements by orders of magnitude while at the same time offering additional degrees of freedom for engineering the optical properties by using approaches such as dispersion engineering. Importantly, the large refractive index contrast of TFLN enables, for the first time, the realization of lithium niobate–based photonic integrated circuits on a wafer scale. OUTLOOK The broad spectral coverage, ultralow power requirements, and flexibilities of lithium niobate photonics in EM wave generation provides a large toolset to explore new device functionalities. Furthermore, the adoption of lithium niobate–integrated photonics in foundries is a promising approach to miniaturize essential bench-top optical systems using wafer scale production. Heterogeneous integration of active materials with lithium niobate has the potential to create integrated photonic circuits with rich functionalities. Applications such as high-speed communications, scalable quantum computing, artificial intelligence and neuromorphic computing, and compact optical clocks for satellites and precision sensing are expected to particularly benefit from these advances and provide a wealth of opportunities for commercial exploration. Also, bulk crystals and weakly confining waveguides in lithium niobate are expected to keep playing a crucial role in the near future because of their advantages in high-power and loss-sensitive quantum optics applications. As such, lithium niobate photonics holds great promise for unlocking the EM spectrum and reshaping information technologies for our society in the future. Lithium niobate spectral coverage. The EM spectral range and processes for generating EM frequencies when using lithium niobate (LN) for frequency mixing. AO, acousto-optic; AOM, acousto-optic modulation; χ (2) , second-order nonlinearity; χ (3) , third-order nonlinearity; EO, electro-optic; EOM, electro-optic modulation; HHG, high-harmonic generation; IR, infrared; OFC, optical frequency comb; OPO, optical paramedic oscillator; OR, optical rectification; SCG, supercontinuum generation; SHG, second-harmonic generation; UV, ultraviolet. 
    more » « less