skip to main content


Search for: All records

Creators/Authors contains: "Harlow, Danielle B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum computing (QC) is an emerging field at the intersection of computer science and physics. Harnessing the power of quantum mechanics, QC is expected to solve otherwise intractable problems significantly faster, including in encryption, drug development, and optimization. High-quality and accessible QC resources are needed to help students develop the critical skills and confidence to contribute to the field. However, existing programs are often aimed at college students with an advanced mathematics or physics background, shutting out potential innovators. To make quantum learning resources for a broad, young audience, we designed Qupcakery, a puzzle game that introduces players to several core QC concepts: quantum gates, superposition, and measurement. We present preliminary testing results with both middle school and high school students. Using in-game data, observation notes, and focus group interviews, we identify student challenges and report student feedback. Overall, the game is at an appropriate level for high school students but middle school students need more levels to practice when new concepts are introduced. 
    more » « less
  2. MOXI is an interactive science center focused on physics topics such as forces, energy, sound, light, and magnetism. MOXI’s exhibits and education program are informed by Physics Education Research (PER) and the Next Generation Science Standards (NGSS). As a result, MOXI is an outstanding laboratory for research on how people learn physics through interactive experiences and how best to support this learning. However, conducting research in public spaces with diverse audiences differs from classroom based research. These differences provide both opportunities and challenges. Effective research and program design requires multiple types of expertise including content, research design, and informal environments. In MOXI’s first two years of operation, we have conducted research across a wide variety of participants and topics through a research- practice partnership (RPP) model. This paper focuses on establishing RPPs and methodological considerations when conducting research in informal science education settings such as interactive science centers. 
    more » « less
  3. The Next Generation Science Standards have incorporated engineering standards, requiring K-12 teachers to teach engineering. Unfortunately, teachers are ill-prepared and have little comfort to introduce these unfamiliar complex topics into their classrooms. The University of California at Santa Barbara and MOXI, The Wolf Museum of Exploration + Innovation partnered up to tackle this problem and bring physics-related engineering activities to teachers through the MOXI Engineering Explorations program. A key challenge has been creating activities so that they are effective learning opportunities for first graders (6 years old) through sixth graders (12 years old). Here, we present design guidelines for adapting activities for younger and older children. This framework is also useful for other physics outreach programs that work with wide a range of age levels. 
    more » « less
  4. Visual block-based programming environments (VBBPEs) such as Scratch and Alice are increasingly being used in introductory computer science lessons across elementary school grades. These environments, and the curricula that accompany them, are designed to be developmentally-appropriate and engaging for younger learners but may introduce challenges for future computer science educators. Using the final projects of 4th, 5th, and 6th grade students who completed an introductory curriculum using a VBBPE, this paper focuses on patterns that show success within the context of VBBPEs but could pose potential challenges for teachers of follow-up computer science instruction. This paper focuses on three specific strategies observed in learners' projects: (1) wait blocks being used to manage program execution, (2) the use of event-based programming strategies to produce parallel outcomes, and (3) the coupling of taught concepts to curricular presentation. For each of these outcomes, we present data on how the course materials supported them, what learners achieved while enacting them, and the implications the strategy poses for future educators. We then discuss possible design and pedagogical responses. The contribution of this work is that it identifies early computer science learning strategies, contextualizes them within developmentally-appropriate environments, and discusses their implications with respect to future pedagogy. This paper advances our understanding of the role of VBBPEs in introductory computing and their place within the larger K-12 computer science trajectory. 
    more » « less
  5. Abstract

    We investigated beginning secondary science teachers’ understandings of the science and engineering practice of developing and using models. Our study was situated in a scholarship program that served two groups: undergraduate STEM majors interested in teaching, or potential teachers, and graduate students enrolled in a teacher education program to earn their credentials, or preservice teachers. The two groups completed intensive practicum experiences in STEM‐focused academies within two public high schools. We conducted a series of interviews with each participant and used grade‐level competencies outlined in theNext Generation Science Standardsto analyze their understanding of the practice of developing and using models. We found that potential and preservice teachers understood this practice in ways that both aligned and did not align with theNGSSand that their understandings varied across the two groups and the two practicum contexts. In our implications, we recommend that teacher educators recognize and build from the various ways potential and preservice teachers understand this complex practice to improve its implementation in science classrooms. Further, we recommend that a variety of practicum contexts may help beginning teachers develop a greater breadth of understanding about the practice of developing and using models.

     
    more » « less