skip to main content


Search for: All records

Creators/Authors contains: "Heeger, K. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Free, publicly-accessible full text available June 1, 2024
  3. Abstract

    The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for$$0\nu \beta \beta $$0νββdecay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988$${\mathrm{TeO}}_{2}$$TeO2crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its$$3{\mathrm{rd}}$$3rdresult of the search for$$0\nu \beta \beta $$0νββ, corresponding to a tonne-year of$$\mathrm{TeO}_{2}$$TeO2exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of$$0\nu \beta \beta $$0νββdecay in$${}^{130}\mathrm{Te}$$130Teever conducted . We present the current status of CUORE search for$$0\nu \beta \beta $$0νββwith the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the$${}^{130}\mathrm{Te}$$130Te$$2\nu \beta \beta $$2νββdecay half-life and decay to excited states of$${}^{130}\mathrm{Xe}$$130Xe, studies performed using an exposure of 300.7 kg yr.

     
    more » « less
  4. null (Ed.)
  5. Abstract CUORE Upgrade with Particle IDentification (CUPID) is a foreseen ton-scale array of Li 2 MoO 4 (LMO) cryogenic calorimeters with double readout of heat and light signals. Its scientific goal is to fully explore the inverted hierarchy of neutrino masses in the search for neutrinoless double beta decay of 100 Mo. Pile-up of standard double beta decay of the candidate isotope is a relevant background. We generate pile-up heat events via injection of Joule heater pulses with a programmable waveform generator in a small array of LMO crystals operated underground in the Laboratori Nazionali del Gran Sasso, Italy. This allows to label pile-up pulses and control both time difference and underlying amplitudes of individual heat pulses in the data. We present the performance of supervised learning classifiers on data and the attained pile-up rejection efficiency. 
    more » « less
  6. Abstract The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 1937 1 . Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter–antimatter asymmetry of the universe via leptogenesis 2 , the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta (0 νββ ) decay. Here we show results from the search for 0 νββ decay of 130 Te, using the latest advanced cryogenic calorimeters with the CUORE experiment 3 . CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultralow temperatures, operational longevity, and the low levels of ionizing radiation emanating from the cryogenic infrastructure. We find no evidence for 0 νββ decay and set a lower bound of the process half-life as 2.2 × 10 25  years at a 90 per cent credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which can benefit from sustained operation of large payloads in a low-radioactivity, ultralow-temperature cryogenic environment. 
    more » « less
  7. Abstract

    The Locust simulation package is a new C++ software tool developed to simulate the measurement of time-varying electromagnetic fields using RF detection techniques. Modularity and flexibility allow for arbitrary input signals, while concurrently supporting tight integration with physics-based simulations as input. External signals driven by the Kassiopeia particle tracking package are discussed, demonstrating conditional feedback between Locust and Kassiopeia during software execution. An application of the simulation to the Project 8 experiment is described. Locust is publicly available athttps://github.com/project8/locust_mc.

     
    more » « less