skip to main content


Search for: All records

Creators/Authors contains: "Hooe, Shelby L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 12, 2024
  2. In the face of rising atmospheric carbon dioxide (CO 2 ) emissions from fossil fuel combustion, the hydrogen evolution reaction (HER) continues to attract attention as a method for generating a carbon-neutral energy source for use in fuel cells. Since some of the best-known catalysts use precious metals like platinum, which have low natural abundance and high cost, developing efficient Earth abundant transition metal catalysts for HER is an important objective. Building off previous work with transition metal catalysts bearing 2,2′-bipyridine-based ligand frameworks, this work reports the electrochemical analysis of a molecular nickel( ii ) complex, which can act as an electrocatalyst for the HER with a faradaic efficiency for H 2 of 94 ± 8% and turnover frequencies of 103 ± 6 s −1 when pentafluorophenol is used as a proton donor. Computational studies of the Ni catalyst suggest that non-covalent interactions between the proton donor and ligand heteroatoms are relevant to the mechanism for electrocatalytic HER. 
    more » « less
  3. We report a new terpyridine-based FeN3O catalyst, Fe(tpytbupho)Cl2, which reduces O2 to H2O. Variable concentration and variable temperature spectrochemical studies with decamethylferrocene as a chemical reductant in acetonitrile solution enabled the elucidation of key reaction parameters for the catalytic reduction of O2 to H2O by Fe(tpytbupho)Cl2. These mechanistic studies suggest that a 2 + 2 mechanism is operative, where hydrogen peroxide is produced as a discrete intermediate, prior to further reduction to H2O. Consistent with this proposal, the spectrochemically measured first-order rate constant k (s−1) value for H2O2 reduction is larger than that for O2 reduction. Further, significant H2O2 production is observed under hydrodynamic conditions in rotating ring-disk electrode measurements, where the product can be swept away from the cathode surface before further reduction occurs. 
    more » « less
  4. Electrocatalytic CO 2 reduction is an attractive strategy to mitigate the continuous rise in atmospheric CO 2 concentrations and generate value-added chemical products. A possible strategy to increase the activity of molecular systems for these reactions is the co-catalytic use of redox mediators (RMs), which direct reducing equivalents from the electrode surface to the active site. Recently, we demonstrated that a sulfone-based RM could trigger co-electrocatalytic CO 2 reduction via an inner-sphere mechanism under aprotic conditions. Here, we provide support for inner-sphere cooperativity under protic conditions by synthetically modulating the mediator to increase activity at lower overpotentials (inverse potential scaling). Furthermore, we show that both the intrinsic and co-catalytic performance of the Cr-centered catalyst can be enhanced by ligand design. By tuning both the Cr-centered catalyst and RM appropriately, an optimized co-electrocatalytic system with quantitative selectivity for CO at an overpotential ( η ) of 280 mV and turnover frequency (TOF) of 194 s −1 is obtained, representing a three-fold increase in co-catalytic activity at 130 mV lower overpotential than our original report. Importantly, this work lays the foundation of a powerful tool for developing co-catalytic systems for homogeneous electrochemical reactions. 
    more » « less
  5. The two-electron and two-proton p -hydroquinone/ p -benzoquinone (H 2 Q/BQ) redox couple has mechanistic parallels to the function of ubiquinone in the electron transport chain. This proton-dependent redox behavior has shown applicability in catalytic aerobic oxidation reactions, redox flow batteries, and co-electrocatalytic oxygen reduction. Under nominally aprotic conditions in non-aqueous solvents, BQ can be reduced by up to two electrons in separate electrochemically reversible reactions. With weak acids (AH) at high concentrations, potential inversion can occur due to favorable hydrogen-bonding interactions with the intermediate monoanion [BQ(AH) m ]˙ − . The solvation shell created by these interactions can mediate a second one-electron reduction coupled to proton transfer at more positive potentials ([BQ(AH) m ]˙ − + n AH + e − ⇌ [HQ(AH) (m+n)−1 (A)] 2− ), resulting in an overall two electron reduction at a single potential at intermediate acid concentrations. Here we show that hydrogen-bonded adducts of reduced quinones and the proton donor 2,2,2-trifluoroethanol (TFEOH) can mediate the transfer of electrons to a Mn-based complex during the electrocatalytic reduction of dioxygen (O 2 ). The Mn electrocatalyst is selective for H 2 O 2 with only TFEOH and O 2 present, however, with BQ present under sufficient concentrations of TFEOH, an electrogenerated [H 2 Q(AH) 3 (A) 2 ] 2− adduct (where AH = TFEOH) alters product selectivity to 96(±0.5)% H 2 O in a co-electrocatalytic fashion. These results suggest that hydrogen-bonded quinone anions can function in an analogous co-electrocatalytic manner to H 2 Q. 
    more » « less
  6. null (Ed.)
    Pentacoordinate Al catalysts comprising bipyridine (bpy) and phenanthroline (phen) backbones were synthesized and their catalytic activity in epoxide/anhydride copolymerization was investigated and compared to ( t-Bu salph)AlCl. Stoichiometric reactions of tricyclic anhydrides with Al alkoxide complexes produced ring-opened products that were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography, revealing key regio- and stereochemical aspects. 
    more » « less
  7. Abstract

    Glyphosate is a globally applied herbicide yet it has been relatively undetectable in‐field samples outside of gold‐standard techniques. Its presumed nontoxicity toward humans has been contested by the International Agency for Research on Cancer, while it has been detected in farmers’ urine, surface waters and crop residues. Rapid, on‐site detection of glyphosate is hindered by lack of field‐deployable and easy‐to‐use sensors that circumvent sample transportation to limited laboratories that possess the equipment needed for detection. Herein, the flavoenzyme, glycine oxidase, immobilized on platinum‐decorated laser‐induced graphene (LIG) is used for selective detection of glyphosate as it is a substrate for GlyOx. The LIG platform provides a scaffold for enzyme attachment while maintaining the electronic and surface properties of graphene. The sensor exhibits a linear range of 10–260µm, detection limit of 3.03µm, and sensitivity of 0.991 nAµm−1. The sensor shows minimal interference from the commonly used herbicides and insecticides: atrazine, 2,4‐dichlorophenoxyacetic acid, dicamba, parathion‐methyl, paraoxon‐methyl, malathion, chlorpyrifos, thiamethoxam, clothianidin, and imidacloprid. Sensor function is further tested in complex river water and crop residue fluids, which validate this platform as a scalable, direct‐write, and selective method of glyphosate detection for herbicide mapping and food analysis.

     
    more » « less