skip to main content


Search for: All records

Creators/Authors contains: "Jackson, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Histopathology plays a critical role in the diagnosis and surgical management of cancer. However, access to histopathology services, especially frozen section pathology during surgery, is limited in resource-constrained settings because preparing slides from resected tissue is time-consuming, labor-intensive, and requires expensive infrastructure. Here, we report a deep-learning-enabled microscope, named DeepDOF-SE, to rapidly scan intact tissue at cellular resolution without the need for physical sectioning. Three key features jointly make DeepDOF-SE practical. First, tissue specimens are stained directly with inexpensive vital fluorescent dyes and optically sectioned with ultra-violet excitation that localizes fluorescent emission to a thin surface layer. Second, a deep-learning algorithm extends the depth-of-field, allowing rapid acquisition of in-focus images from large areas of tissue even when the tissue surface is highly irregular. Finally, a semi-supervised generative adversarial network virtually stains DeepDOF-SE fluorescence images with hematoxylin-and-eosin appearance, facilitating image interpretation by pathologists without significant additional training. We developed the DeepDOF-SE platform using a data-driven approach and validated its performance by imaging surgical resections of suspected oral tumors. Our results show that DeepDOF-SE provides histological information of diagnostic importance, offering a rapid and affordable slide-free histology platform for intraoperative tumor margin assessment and in low-resource settings.

     
    more » « less
  2. Abstract In Neurospora crassa, expression from an unpaired gene is suppressed by a mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD utilizes common RNA interference (RNAi) factors to silence target mRNAs. Here, we report that Neurospora CAR-1 and CGH-1, homologs of two Caenorhabditis elegans RNA granule components, are involved in MSUD. These fungal proteins are found in the perinuclear region and P-bodies, much like their worm counterparts. They interact with components of the meiotic silencing complex (MSC), including the SMS-2 Argonaute. This is the first time MSUD has been linked to RNA granule proteins. 
    more » « less
  3. null (Ed.)
    The purpose of this report is to share a conceptual model useful in the design of professional learning about teaching for university mathematics faculty. The model is illustrated by examples from a particular design effort: the development of an online shortcourse for faculty new to teaching mathematics courses for prospective primary school teachers. How novice mathematics teacher educators grow as instructors is an emerging area of research and development in the United States. At the same time, it is well established that effective instructional design of any course, including a course for faculty, requires breadth first: understanding and anticipating the needs of the learner. Therefore, given the sparse knowledge base in the new arena of mathematics teacher educator professional growth, effective design requires leveraging the scant existing research while also exploring and iteratively refining broad goals and objectives for faculty learning. Only after a conceptual foundation is articulated for what is to be learned and what will constitute evidence of learning, can cycles of design productively examine and test-bed particular course features such as lesson content, structures (like scope and sequence), and processes (like communication and evaluation). In the example used in this report, several researchbased perspectives on learning in/for/about teaching guided design goals and short-course objectives. These valued perspectives informed creation and prioritization of principles for short-course design which, in turn, informed evaluation of faculty learning. With these conceptual foundations in place, design of lessons to realize the goals, principles, and objectives rapidly followed. The work reported here contributes to the knowledge base in two ways: (1) it addresses faculty professional development directly by describing and illustrating a model for supporting instructional improvement and (2) it provides metanarrative to scaffold the professional growth of those who design professional learning opportunities for post-secondary mathematics faculty. 
    more » « less
  4. null (Ed.)
    Microscopic evaluation of resected tissue plays a central role in the surgical management of cancer. Because optical microscopes have a limited depth-of-field (DOF), resected tissue is either frozen or preserved with chemical fixatives, sliced into thin sections placed on microscope slides, stained, and imaged to determine whether surgical margins are free of tumor cells—a costly and time- and labor-intensive procedure. Here, we introduce a deep-learning extended DOF (DeepDOF) microscope to quickly image large areas of freshly resected tissue to provide histologic-quality images of surgical margins without physical sectioning. The DeepDOF microscope consists of a conventional fluorescence microscope with the simple addition of an inexpensive (less than $10) phase mask inserted in the pupil plane to encode the light field and enhance the depth-invariance of the point-spread function. When used with a jointly optimized image-reconstruction algorithm, diffraction-limited optical performance to resolve subcellular features can be maintained while significantly extending the DOF (200 µm). Data from resected oral surgical specimens show that the DeepDOF microscope can consistently visualize nuclear morphology and other important diagnostic features across highly irregular resected tissue surfaces without serial refocusing. With the capability to quickly scan intact samples with subcellular detail, the DeepDOF microscope can improve tissue sampling during intraoperative tumor-margin assessment, while offering an affordable tool to provide histological information from resected tissue specimens in resource-limited settings. 
    more » « less
  5. While the ultimate goal of natural-language based Human-Robot Interaction (HRI) may be free-form, mixed-initiative dialogue,social robots deployed in the near future will likely primarily engage in wakeword-driven interaction, in which users’ commands are prefaced by a wakeword such as “Hey, Robot.” This style of interaction helps to allay user privacy concerns, as the robot’s full speech recognition module need not be employed until the target wakeword is used. Unfortunately, there are a number of concerns in the popular media surrounding this style of interaction, with consumers fearing that it is training users (in particular,children) to be rude towards technology, and by extension, rude towards other humans. In this paper, we present a study that demonstrates how an alternate style of wakeword, i.e., “Excuse me, Robot” may allay this concern, by priming users to phrase commands as Indirect Speech Acts 
    more » « less
  6. Abstract

    Since the middle of the last decade, UCSD has incorporated magnetic field data in its Institute for Space‐Earth Environmental Research interplanetary scintillation tomographic analysis. These data are extrapolated upward from the solar surface using the Current Sheet Source Surface model (Zhao & Hoeksema, 1995,https://doi.org/10.1029/94JA02266) to provide predictions of the interplanetary field in RTN coordinates. Over the years this technique has become ever more sophisticated, and allows different types of magnetogram data (SOLIS, Global Oscillation Network Group, etc.,) to be incorporated in the field extrapolations. At Earth, these fields can be displayed in a variety of ways, including Geocentric Solar Magnetospheric (GSM) Bx, By, and Bzcoordinates. Displayed daily, the Current Sheet Source Surface model‐derived GSM Bzshows a significant positive correlation with the low‐resolution (few day variation) in situ measurements of the Bzfield. The nano‐Tesla variations of Bzmaximize in spring and fall as Russell and McPherron (1973,https://doi.org/10.1029/JA078i001p00092) have shown. More significantly, we find that the daily variations are correlated with geomagnetic Kp and Dst index variations, and that a decrease from positive to negative Bzhas a high correlation with minor‐to‐moderate geomagnetic storm activity, as defined by NOAA Space Weather Prediction Center planetary Kp values. Here we provide an 11‐year study of the predicted Bzfield, from the extrapolation of the Global Oscillation Network Group‐magnetograms. We provide a skill‐score analysis of the technique's geomagnetic storm prediction capability, which allows forecasts of moderate enhanced geomagnetic storm activity. UCSD and the Korean Space Weather Center currently operate a website that predicts this low‐resolution GSM Bzfield component variation several days in advance.

     
    more » « less