skip to main content


Search for: All records

Creators/Authors contains: "Jones, G. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Gaseous outflows are key phenomena in the evolution of galaxies, as they affect star formation (either positively or negatively), eject gas from the core or disc, and directly cause mixing of pristine and processed material. Active outflows may be detected through searches for broad spectral line emission or high-velocity gas, but it is also possible to determine the presence of past outflows by searching for extended reservoirs of chemically enriched molecular gas in the circumgalactic medium (CGM) around galaxies. In this work, we examine the CO(3−2) emission of a set of seven z ∼ 2.0–2.5 active galactic nuclei (AGN) host galaxies, as observed with ALMA. Through a 3D stacking analysis, we find evidence for extended CO emission of radius r ∼ 13 kpc. We extend this analysis to the HST/ACS i-band images of the sample galaxies, finding a complex small-scale (r < 10 kpc) morphology but no robust evidence for extended emission. In addition, the dust emission (traced by rest-frame FIR emission) shows no evidence for significant spatial extension. This indicates that the diffuse CO emission revealed by ALMA is morphologically distinct from the stellar component, and thus traces an extended reservoir of enriched gas. The presence of a diffuse, enriched molecular reservoir around this sample of AGN host galaxies at cosmic noon hints at a history of AGN-driven outflows that likely had strong effects on the star formation history of these objects.

     
    more » « less
  2. ABSTRACT

    We have carried out the first spatially resolved investigation of the multiphase interstellar medium (ISM) at high redshift, using the z = 4.24 strongly lensed submillimetre galaxy H-ATLASJ142413.9+022303 (ID141). We present high-resolution (down to ∼350 pc) ALMA observations in dust continuum emission and in the CO(7–6), $\rm H_2O (2_{1,1} - 2_{0,2})$, [C i] (1–0), and [C i] (2–1) lines, the latter two allowing us to spatially resolve the cool phase of the ISM for the first time. Our modelling of the kinematics reveals that the system appears to be dominated by a rotationally-supported gas disc with evidence of a nearby perturber. We find that the [C i] (1–0) line has a very different distribution to the other lines, showing the existence of a reservoir of cool gas that might have been missed in studies of other galaxies. We have estimated the mass of the ISM using four different tracers, always obtaining an estimate in the range of $\rm 3.2{\!-\!}3.8 \times 10^{11}\ M_{\odot }$, significantly higher than our dynamical mass estimate of $\rm 0.8{\!-\!}1.3 \times 10^{11}\ M_{\odot }$. We suggest that this conflict and other similar conflicts reported in the literature is because the gas-to-tracer ratios are ≃4 times lower than the Galactic values used to calibrate the ISM in high-redshift galaxies. We demonstrate that this could result from a top-heavy initial mass function and strong chemical evolution. Using a variety of quantitative indicators, we show that, extreme though it is at z = 4.24, ID141 will likely join the population of quiescent galaxies that appears in the Universe at z ∼ 3.

     
    more » « less
  3. ABSTRACT

    We present 10 main-sequence ALPINE galaxies (log (M/M⊙) = 9.2−11.1 and ${\rm SFR}=23-190\, {\rm M_{\odot }\, yr^{-1}}$) at z ∼ 4.5 with optical [O ii] measurements from Keck/MOSFIRE spectroscopy and Subaru/MOIRCS narrow-band imaging. This is the largest such multiwavelength sample at these redshifts, combining various measurements in the ultraviolet, optical, and far-infrared including [C ii]158 $\mu$m line emission and dust continuum from ALMA and H α emission from Spitzer photometry. For the first time, this unique sample allows us to analyse the relation between [O ii] and total star-formation rate (SFR) and the interstellar medium (ISM) properties via [O ii]/[C ii] and [O ii]/H α luminosity ratios at z ∼ 4.5. The [O ii]−SFR relation at z ∼ 4.5 cannot be described using standard local descriptions, but is consistent with a metal-dependent relation assuming metallicities around $50{{\ \rm per\ cent}}$ solar. To explain the measured dust-corrected luminosity ratios of $\log (L_{\rm [OII]}/L_{\rm [CII]}) \sim 0.98^{+0.21}_{-0.22}$ and $\log (L_{\rm [OII]}/L_{\rm H\alpha }) \sim -0.22^{+0.13}_{-0.15}$ for our sample, ionization parameters log (U) < −2 and electron densities $\log (\rm n_e / {\rm [cm^{-3}]}) \sim 2.5-3$ are required. The former is consistent with galaxies at z ∼ 2−3, however lower than at z > 6. The latter may be slightly higher than expected given the galaxies’ specific SFR. The analysis of this pilot sample suggests that typical log (M/M⊙) > 9 galaxies at z ∼ 4.5 to have broadly similar ISM properties as their descendants at z ∼ 2 and suggest a strong evolution of ISM properties since the epoch of reionization at z > 6.

     
    more » « less
  4. Aims. The dust content of normal galaxies and the dust mass density (DMD) at high- z ( z  > 4) are unconstrained given the source confusion and the sensitivity limitations of previous observations. The ALMA Large Program to INvestigate [CII] at Early times (ALPINE), which targeted 118 ultra-violet (UV)-selected star-forming galaxies at 4.4 <  z  < 5.9, provides a new opportunity to tackle this issue for the first time with a statistically robust dataset. Methods. We exploited the rest-frame far-infrared (FIR) fluxes of 23 galaxies individually detected in their continuum emission, as well as stacked continuum images, to measure the dust content of the 118 UV-selected ALPINE galaxies. We focused on the dust scaling relations and, by comparison with predictions from chemical evolution models, we probed the evolutionary stage of UV-selected galaxies at high- z . By using the observed correlation between the UV luminosity and the dust mass, we estimated the DMD of UV-selected galaxies at z  ∼ 5, weighting the galaxies by means of the UV luminosity function. The derived DMD is compared with the value we estimated from ten ALPINE galaxies blindly detected in the FIR continuum, at the redshift of the ALPINE targets. Results. Our ALMA survey allows the exploration for the first time of the dust content in normal star-forming galaxies at z  > 4 in a statistically robust sample of sources. The comparison of the observed dust scaling relations with chemical evolution models suggests that ALPINE galaxies are not likely progenitors of disc galaxies, but of intermediate- and low-mass proto-spheroids, resulting in present-day bulges of spiral or elliptical galaxies. Interestingly, this conclusion is in line with the independent morphological analysis that shows that the majority (∼70%) of the dust-continuum detected galaxies have a disturbed morphology. The DMD obtained at z  ∼ 5 from UV-selected sources is ∼30% of the value obtained from blind FIR-selected sources, showing that the UV selection misses the most dust-rich, UV-obscured galaxies. 
    more » « less
  5. Star formation rate (SFR) measurements at z  > 4 have relied mostly on the rest-frame far-ultraviolet (FUV) observations. The corrections for dust attenuation based on the IRX- β relation are highly uncertain and are still debated in the literature. Hence, rest-frame far-infrared (FIR) observations are necessary to constrain the dust-obscured component of the SFR. In this paper, we exploit the rest-frame FIR continuum observations collected by the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) to directly constrain the obscured SFR in galaxies at 4.4 <  z  < 5.9. We used stacks of continuum images to measure average infrared luminosities taking both detected and undetected sources into account. Based on these measurements, we measured the position of the main sequence of star-forming galaxies and the specific SFR (sSFR) at z  ∼ 4.5 and z  ∼ 5.5. We find that the main sequence and sSFR do not significantly evolve between z  ∼ 4.5 and z  ∼ 5.5, as opposed to lower redshifts. We developed a method to derive the obscured SFR density (SFRD) using the stellar masses or FUV-magnitudes as a proxy of FIR fluxes measured on the stacks and combining them with the galaxy stellar mass functions and FUV luminosity functions from the literature. We obtain consistent results independent of the chosen proxy. We find that the obscured fraction of SFRD is decreasing with increasing redshift, but even at z  ∼ 5.5 it constitutes around 61% of the total SFRD. 
    more » « less
  6. null (Ed.)
    We present ALMA observations of a merging system at z  ∼ 4.57, observed as a part of the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) survey. Combining ALMA [CII]158  μ m and far-infrared continuum data with multi-wavelength ancillary data, we find that the system is composed of two massive ( M ⋆  ≳ 10 10   M ⊙ ) star-forming galaxies experiencing a major merger (stellar mass ratio r mass  ≳ 0.9) at close spatial (∼13 kpc; projected) and velocity (Δ v  <  300 km s −1 ) separations, and two additional faint narrow [CII]-emitting satellites. The overall system belongs to a larger scale protocluster environment and is coincident to one of its overdensity peaks. Additionally, ALMA reveals the presence of [CII] emission arising from a circumgalactic gas structure, extending up to a diameter-scale of ∼30 kpc. Our morpho-spectral decomposition analysis shows that about 50% of the total flux resides between the individual galaxy components, in a metal-enriched gaseous envelope characterised by a disturbed morphology and complex kinematics. Similarly to observations of shock-excited [CII] emitted from tidal tails in local groups, our results can be interpreted as a possible signature of interstellar gas stripped by strong gravitational interactions, with a possible contribution from material ejected by galactic outflows and emission triggered by star formation in small faint satellites. Our findings suggest that mergers could be an efficient mechanism of gas mixing in the circumgalactic medium around high- z galaxies, and thus play a key role in the galaxy baryon cycle at early epochs. 
    more » « less
  7. Aims. We present the detailed characterisation of a sample of 56 sources serendipitously detected in ALMA band 7 as part of the ALMA Large Program to INvestigate CII at Early Times (ALPINE). These sources, detected in COSMOS and ECDFS, have been used to derive the total infrared luminosity function (LF) and to estimate the cosmic star formation rate density (SFRD) up to z  ≃ 6. Methods. We looked for counterparts of the ALMA sources in all the available multi-wavelength (from HST to VLA) and photometric redshift catalogues. We also made use of deeper UltraVISTA and Spitzer source lists and maps to identify optically dark sources with no matches in the public catalogues. We used the sources with estimated redshifts to derive the 250 μ m rest-frame and total infrared (8–1000 μ m) LFs from z  ≃ 0.5 to 6. Results. Our ALMA blind survey (860 μ m flux density range: ∼0.3–12.5 mJy) allows us to further push the study of the nature and evolution of dusty galaxies at high- z , identifying luminous and massive sources to redshifts and faint luminosities never probed before by any far-infrared surveys. The ALPINE data are the first ones to sample the faint end of the infrared LF, showing little evolution from z  ≃ 2.5 to z ≃ 6, and a “flat” slope up to the highest redshifts (i.e. 4.5 <   z  <  6). The SFRD obtained by integrating the luminosity function remains almost constant between z  ≃ 2 and z  ≃ 6, and significantly higher than the optical or ultra-violet derivations, showing a significant contribution of dusty galaxies and obscured star formation at high- z . About 14% of all the ALPINE serendipitous continuum sources are found to be optically and near-infrared (near-IR) dark (to a depth K s  ∼ 24.9 mag). Six show a counterpart only in the mid-IR and no HST or near-IR identification, while two are detected as [C II] emitters at z  ≃ 5. The six HST+near-IR dark galaxies with mid-IR counterparts are found to contribute about 17% of the total SFRD at z  ≃ 5 and to dominate the high-mass end of the stellar mass function at z  >  3. 
    more » « less
  8. The [C  II ] 158 μ m line is one of the strongest IR emission lines, which has been shown to trace the star formation rate (SFR) of galaxies in the nearby Universe, and up to z  ∼ 2. Whether this is also the case at higher redshift and in the early Universe remains debated. The ALPINE survey, which targeted 118 star-forming galaxies at 4.4 <   z  <  5.9, provides a new opportunity to examine this question with the first statistical dataset. Using the ALPINE data and earlier measurements from the literature, we examine the relation between the [C  II ] luminosity and the SFR over the entire redshift range from z  ∼ 4 − 8. ALPINE galaxies, which are both detected in [C  II ] and in dust continuum, show good agreement with the local L ([CII])–SFR relation. Galaxies undetected in the continuum by ALMA are found to be over-luminous in [C  II ] when the UV SFR is used. After accounting for dust-obscured star formation, by an amount of SFR(IR) ≈ SFR(UV) on average, which results from two different stacking methods and SED fitting, the ALPINE galaxies show an L ([CII])–SFR relation comparable to the local one. When [C  II ] non-detections are taken into account, the slope may be marginally steeper at high- z , although this is still somewhat uncertain. When compared homogeneously, the z  >  6 [C  II ] measurements (detections and upper limits) do not behave very differently to the z  ∼ 4 − 6 data. We find a weak dependence of L ([CII])/SFR on the Ly α equivalent width. Finally, we find that the ratio L ([CII])/ L IR ∼ (1 − 3) × 10 −3 for the ALPINE sources, comparable to that of “normal” galaxies at lower redshift. Our analysis, which includes the largest sample (∼150 galaxies) of [C  II ] measurements at z  > 4 available so far, suggests no or little evolution of the [C  II ]–SFR relation over the last 13 Gyr of cosmic time. 
    more » « less
  9. The Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [CII] at Early times (ALPINE) targets the [CII] 158 μ m line and the far-infrared continuum in 118 spectroscopically confirmed star-forming galaxies between z  = 4.4 and z  = 5.9. It represents the first large [CII] statistical sample built in this redshift range. We present details regarding the data processing and the construction of the catalogs. We detected 23 of our targets in the continuum. To derive accurate infrared luminosities and obscured star formation rates (SFRs), we measured the conversion factor from the ALMA 158 μ m rest-frame dust continuum luminosity to the total infrared luminosity ( L IR ) after constraining the dust spectral energy distribution by stacking a photometric sample similar to ALPINE in ancillary single-dish far-infrared data. We found that our continuum detections have a median L IR of 4.4 × 10 11 L ⊙ . We also detected 57 additional continuum sources in our ALMA pointings. They are at a lower redshift than the ALPINE targets, with a mean photometric redshift of 2.5 ± 0.2. We measured the 850 μ m number counts between 0.35 and 3.5 mJy, thus improving the current interferometric constraints in this flux density range. We found a slope break in the number counts around 3 mJy with a shallower slope below this value. More than 40% of the cosmic infrared background is emitted by sources brighter than 0.35 mJy. Finally, we detected the [CII] line in 75 of our targets. Their median [CII] luminosity is 4.8 × 10 8 L ⊙ and their median full width at half maximum is 252 km s −1 . After measuring the mean obscured SFR in various [CII] luminosity bins by stacking ALPINE continuum data, we find a good agreement between our data and the local and predicted SFR– L [CII] relations. 
    more » « less
  10. ABSTRACT We report the serendipitous discovery of a dust-obscured galaxy observed as part of the Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [C ii] at Early times (ALPINE). While this galaxy is detected both in line and continuum emissions in ALMA Band 7, it is completely dark in the observed optical/near-infrared bands and only shows a significant detection in the UltraVISTA Ks band. We discuss the nature of the observed ALMA line, that is [C ii] at $z$ ∼ 4.6 or high-J CO transitions at $z$ ∼ 2.2. In the first case, we find a [C ii]/FIR luminosity ratio of $\mathrm{log}{(L_{[\mathrm{ C}\, \rm {\small {II}}]}/L_{\mathrm{ FIR}})} \sim -2.5$, consistent with the average value for local star-forming galaxies (SFGs). In the second case instead, the source would lie at larger CO luminosities than those expected for local SFGs and high-z submillimetre galaxies. At both redshifts, we derive the star formation rate (SFR) from the ALMA continuum and the physical parameters of the galaxy, such as the stellar mass (M*), by fitting its spectral energy distribution. Exploiting the results of this work, we believe that our source is a ‘main-sequence’, dusty SFG at $z$ = 4.6 (i.e. [C ii] emitter) with $\mathrm{log(SFR/M_{\odot }\, yr^{-1})}\sim 1.4$ and log(M*/M⊙) ∼ 9.9. As a support to this scenario our galaxy, if at this redshift, lies in a massive protocluster recently discovered at $z$ ∼ 4.57, at only ∼1 proper Mpc from its centre. This work underlines the crucial role of the ALPINE survey in making a census of this class of objects, in order to unveil their contribution to the global SFR density at the end of the Reionization epoch. 
    more » « less