skip to main content

Title: The ALPINE-ALMA [CII] survey: The nature, luminosity function, and star formation history of dusty galaxies up to z  ≃ 6
Aims. We present the detailed characterisation of a sample of 56 sources serendipitously detected in ALMA band 7 as part of the ALMA Large Program to INvestigate CII at Early Times (ALPINE). These sources, detected in COSMOS and ECDFS, have been used to derive the total infrared luminosity function (LF) and to estimate the cosmic star formation rate density (SFRD) up to z  ≃ 6. Methods. We looked for counterparts of the ALMA sources in all the available multi-wavelength (from HST to VLA) and photometric redshift catalogues. We also made use of deeper UltraVISTA and Spitzer source lists and maps to identify optically dark sources with no matches in the public catalogues. We used the sources with estimated redshifts to derive the 250 μ m rest-frame and total infrared (8–1000 μ m) LFs from z  ≃ 0.5 to 6. Results. Our ALMA blind survey (860 μ m flux density range: ∼0.3–12.5 mJy) allows us to further push the study of the nature and evolution of dusty galaxies at high- z , identifying luminous and massive sources to redshifts and faint luminosities never probed before by any far-infrared surveys. The ALPINE data are the first ones to sample the faint end of the more » infrared LF, showing little evolution from z  ≃ 2.5 to z ≃ 6, and a “flat” slope up to the highest redshifts (i.e. 4.5 <   z  <  6). The SFRD obtained by integrating the luminosity function remains almost constant between z  ≃ 2 and z  ≃ 6, and significantly higher than the optical or ultra-violet derivations, showing a significant contribution of dusty galaxies and obscured star formation at high- z . About 14% of all the ALPINE serendipitous continuum sources are found to be optically and near-infrared (near-IR) dark (to a depth K s  ∼ 24.9 mag). Six show a counterpart only in the mid-IR and no HST or near-IR identification, while two are detected as [C II] emitters at z  ≃ 5. The six HST+near-IR dark galaxies with mid-IR counterparts are found to contribute about 17% of the total SFRD at z  ≃ 5 and to dominate the high-mass end of the stellar mass function at z  >  3. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
Astronomy & Astrophysics
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the first [C II] 158 μ m luminosity function (LF) at z  ∼ 5 from a sample of serendipitous lines detected in the ALMA Large Program to INvestigate [C II] at Early times (ALPINE). A study of the 118 ALPINE pointings revealed several serendipitous lines. Based on their fidelity, we selected 14 lines for the final catalog. According to the redshift of their counterparts, we identified eight out of 14 detections as [C II] lines at z  ∼ 5, along with two as CO transitions at lower redshifts. The remaining four lines have an elusive identification in the available catalogsmore »and we considered them as [C II] candidates. We used the eight confirmed [C II] and the four [C II] candidates to build one of the first [C II] LFs at z  ∼ 5. We found that 11 out of these 12 sources have a redshift very similar to that of the ALPINE target in the same pointing, suggesting the presence of overdensities around the targets. Therefore, we split the sample in two (a “clustered” and “field” subsample) according to their redshift separation and built two separate LFs. Our estimates suggest that there could be an evolution of the [C II] LF between z  ∼ 5 and z  ∼ 0. By converting the [C II] luminosity to the star-formation rate, we evaluated the cosmic star-formation rate density (SFRD) at z  ∼ 5. The clustered sample results in a SFRD ∼10 times higher than previous measurements from UV–selected galaxies. On the other hand, from the field sample (likely representing the average galaxy population), we derived a SFRD ∼1.6 higher compared to current estimates from UV surveys but compatible within the errors. Because of the large uncertainties, observations of larger samples will be necessary to better constrain the SFRD at z  ∼ 5. This study represents one of the first efforts aimed at characterizing the demography of [C II] emitters at z  ∼ 5 using a mm selection of galaxies.« less
  2. The Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [CII] at Early times (ALPINE) targets the [CII] 158 μ m line and the far-infrared continuum in 118 spectroscopically confirmed star-forming galaxies between z  = 4.4 and z  = 5.9. It represents the first large [CII] statistical sample built in this redshift range. We present details regarding the data processing and the construction of the catalogs. We detected 23 of our targets in the continuum. To derive accurate infrared luminosities and obscured star formation rates (SFRs), we measured the conversion factor from the ALMA 158 μ m rest-frame dust continuum luminosity tomore »the total infrared luminosity ( L IR ) after constraining the dust spectral energy distribution by stacking a photometric sample similar to ALPINE in ancillary single-dish far-infrared data. We found that our continuum detections have a median L IR of 4.4 × 10 11 L ⊙ . We also detected 57 additional continuum sources in our ALMA pointings. They are at a lower redshift than the ALPINE targets, with a mean photometric redshift of 2.5 ± 0.2. We measured the 850 μ m number counts between 0.35 and 3.5 mJy, thus improving the current interferometric constraints in this flux density range. We found a slope break in the number counts around 3 mJy with a shallower slope below this value. More than 40% of the cosmic infrared background is emitted by sources brighter than 0.35 mJy. Finally, we detected the [CII] line in 75 of our targets. Their median [CII] luminosity is 4.8 × 10 8 L ⊙ and their median full width at half maximum is 252 km s −1 . After measuring the mean obscured SFR in various [CII] luminosity bins by stacking ALPINE continuum data, we find a good agreement between our data and the local and predicted SFR– L [CII] relations.« less
  3. ABSTRACT We report the serendipitous discovery of a dust-obscured galaxy observed as part of the Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [C ii] at Early times (ALPINE). While this galaxy is detected both in line and continuum emissions in ALMA Band 7, it is completely dark in the observed optical/near-infrared bands and only shows a significant detection in the UltraVISTA Ks band. We discuss the nature of the observed ALMA line, that is [C ii] at $z$ ∼ 4.6 or high-J CO transitions at $z$ ∼ 2.2. In the first case, we find a [C ii]/FIR luminosity ratio of $\mathrm{log}{(L_{[\mathrm{more »C}\, \rm {\small {II}}]}/L_{\mathrm{ FIR}})} \sim -2.5$, consistent with the average value for local star-forming galaxies (SFGs). In the second case instead, the source would lie at larger CO luminosities than those expected for local SFGs and high-z submillimetre galaxies. At both redshifts, we derive the star formation rate (SFR) from the ALMA continuum and the physical parameters of the galaxy, such as the stellar mass (M*), by fitting its spectral energy distribution. Exploiting the results of this work, we believe that our source is a ‘main-sequence’, dusty SFG at $z$ = 4.6 (i.e. [C ii] emitter) with $\mathrm{log(SFR/M_{\odot }\, yr^{-1})}\sim 1.4$ and log(M*/M⊙) ∼ 9.9. As a support to this scenario our galaxy, if at this redshift, lies in a massive protocluster recently discovered at $z$ ∼ 4.57, at only ∼1 proper Mpc from its centre. This work underlines the crucial role of the ALPINE survey in making a census of this class of objects, in order to unveil their contribution to the global SFR density at the end of the Reionization epoch.« less
  4. We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <   z  <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log( M * / M ⊙ ) > 6 and redshifts of 0 <   z  <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images tomore »properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z  >  5 galaxy samples can be reduced to < 0.01 arcmin −2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <   z  <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes m UV  <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z  ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end.« less
  5. Star formation rate (SFR) measurements at z  > 4 have relied mostly on the rest-frame far-ultraviolet (FUV) observations. The corrections for dust attenuation based on the IRX- β relation are highly uncertain and are still debated in the literature. Hence, rest-frame far-infrared (FIR) observations are necessary to constrain the dust-obscured component of the SFR. In this paper, we exploit the rest-frame FIR continuum observations collected by the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) to directly constrain the obscured SFR in galaxies at 4.4 <  z  < 5.9. We used stacks of continuum images to measure average infrared luminosities takingmore »both detected and undetected sources into account. Based on these measurements, we measured the position of the main sequence of star-forming galaxies and the specific SFR (sSFR) at z  ∼ 4.5 and z  ∼ 5.5. We find that the main sequence and sSFR do not significantly evolve between z  ∼ 4.5 and z  ∼ 5.5, as opposed to lower redshifts. We developed a method to derive the obscured SFR density (SFRD) using the stellar masses or FUV-magnitudes as a proxy of FIR fluxes measured on the stacks and combining them with the galaxy stellar mass functions and FUV luminosity functions from the literature. We obtain consistent results independent of the chosen proxy. We find that the obscured fraction of SFRD is decreasing with increasing redshift, but even at z  ∼ 5.5 it constitutes around 61% of the total SFRD.« less