skip to main content


Search for: All records

Creators/Authors contains: "Khivantsev, Konstantin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Single layer graphene oxide (SLGO) was studied as a novel coating material to drastically improve the antifouling performance of polyether sulfone (PES) hollow fiber (HF) membranes in membrane bioreactor (MBR) application. By selectively modifying the membrane surface, only a small amount of SLGO coating (6.2 mg m −2 ) was needed to achieve acceptable membrane performance. The UV treatment of the SLGO coating further assisted in improving the antifouling properties of the as-prepared PES HF membranes. By comparing the transmembrane pressure of pristine PES HF and PES_GO 6.20_ UV X (X = 0–1.5 h) membranes in a MBR for wastewater treatment at a fixed water flux, the PES_GO 6.20_ UV 1.0 membrane coated with 1 h UV-treated SLGO was demonstrated to substantially relieve the bio-fouling problem. To understand the influence of SLGO modification on membrane performance, FESEM, ATR-FTIR, and AFM analyses were conducted to characterize the as-prepared membranes, and the SLGO deposition mechanism was also proposed in this study. 
    more » « less
  2. We demonstrated for the first time that inkjet printing can be a low-cost, easy, fast, and scalable method for depositing ultrathin (7.5–60 nm) uniform graphene oxide (GO) nanofiltration membranes on polymeric supports for highly effective water purification. A large area (15 × 15 cm 2 ) GO nanofiltration membrane was printed successfully on a modified polyacrylonitrile (M-PAN) support. Water permeance and rejection of small organic molecules (<1 nm, charged and uncharged) of printed GO membranes can be adjusted by controlling the GO “ink” concentration and/or printing time. Compared with commercial polymeric nanofiltration membranes, printed GO membranes, after optimization, showed approximately one order of magnitude higher water permeance and much higher rejection (>95%) of small organic molecules. Printed GO membranes also showed excellent performance in removing pharmaceutical contaminants, with ∼95% rejection and <10% water permeance decline over extended-period permeation testing. We believe that inkjet printing could be an effective method for preparing ultrathin GO membranes for effective water nanofiltration purification. 
    more » « less
  3. Abstract

    The majority of harmful atmospheric CO and NOxemissions are from vehicle exhausts. Although there has been success addressing NOxemissions at temperatures above 250 °C with selective catalytic reduction technology, emissions during vehicle cold start (when the temperature is below 150 °C), are a major challenge. Herein, we show we can completely eliminate both CO and NOxemissions simultaneously under realistic exhaust flow, using a highly loaded (2 wt %) atomically dispersed palladium in the extra‐framework positions of the small‐pore chabazite material as a CO and passive NOxadsorber. Until now, atomically dispersed highly loaded (>0.3 wt %) transition‐metal/SSZ‐13 materials have not been known. We devised a general, simple, and scalable route to prepare such materials for PtIIand PdII. Through spectroscopy and materials testing we show that both CO and NOxcan be simultaneously completely abated with 100 % efficiency by the formation of mixed carbonyl‐nitrosyl palladium complex in chabazite micropore.

     
    more » « less
  4. Abstract

    The majority of harmful atmospheric CO and NOxemissions are from vehicle exhausts. Although there has been success addressing NOxemissions at temperatures above 250 °C with selective catalytic reduction technology, emissions during vehicle cold start (when the temperature is below 150 °C), are a major challenge. Herein, we show we can completely eliminate both CO and NOxemissions simultaneously under realistic exhaust flow, using a highly loaded (2 wt %) atomically dispersed palladium in the extra‐framework positions of the small‐pore chabazite material as a CO and passive NOxadsorber. Until now, atomically dispersed highly loaded (>0.3 wt %) transition‐metal/SSZ‐13 materials have not been known. We devised a general, simple, and scalable route to prepare such materials for PtIIand PdII. Through spectroscopy and materials testing we show that both CO and NOxcan be simultaneously completely abated with 100 % efficiency by the formation of mixed carbonyl‐nitrosyl palladium complex in chabazite micropore.

     
    more » « less