skip to main content


Search for: All records

Creators/Authors contains: "Kitajima, Kouki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Detrital zircons from the Jack Hills are the dominant source of Hadean (pre-4000 Ma) terrestrial material available for study today. Values of δ18O in many of these zircons (6.0 to 7.5‰ are above the mantle-equilibrated value. For two decades, these mildly elevated values have been the primary evidence that protoliths of the zircon-forming magmas interacted at low temperature with liquid water before burial and melting, implying that the surface of Earth cooled quickly after core and moon formation, and that habitable conditions for life existed within 250 Myr of the formation of Earth, over 800 Myr before the oldest generally accepted microfossils. These conclusions are based on oxygen isotope analyses of zircon domains with well-defined growth zoning and nearly concordant U-Pb ages within zircon grains with low magnetic susceptibility, which are further inferred to be unaltered by various tests. However, no studies of Jack Hills zircons have directly correlated oxygen isotope ratios and radiation damage, which facilitates alteration in zircon. Several previous studies have selected zircons that show radiation damaged, discordant and/or hydrous domains, and have shown that such altered material is not reliable as a record of igneous composition. In contrast, this study targeted zircons that are interpreted to pristine and not altered, and demonstrates the importance of testing zircons for radiation damage and alteration as part of any geochemical study, regardless of age. This study expands on existing data, and presents the first comprehensive evaluation of δ18O, OH/O, CL imaging, U-Pb concordance and radiation-damage state within Jack Hills zircons. A total of 115 Hadean zircon grains in this study have water contents similar to nominally anhydrous standard reference zircons and are interpreted as pristine. In situ Raman data for band broadening correlated with δ18O analyses document low levels of radiation damage, indicating significant annealing. The present-day effective doses (Deff) are uniformly less than the first percolation point (dose where damage domains, that are isolated at lower damage state, overlap to form a continuous pathway through the crystal, ~2×1015 α-decays/mg, Ewing et al., 2003) and most zircons have Deff<1×1015 α-decays/mg. Modeling of representative alpha-recoil damage and annealing histories indicates that most zircons in this study have remained below the Deff of the first percolation point throughout their history. The δ18O values for these primary zircons include many that are higher than would be equilibrated with the mantle at magmatic temperatures and average 6.32 ± 1.3‰ in the Hadean and 6.26 ± 1.6‰ in the Archean. There is no correlation in our suite of pristine Hadean zircons between δ18O and OH/O, Deff, age, or U-Pb age-concordance. These carefully documented Hadean-age zircons possess low amounts of radiation damage in domains sampled by δ18O analysis, are water-poor. The mildly elevated δ18O values are a primary-magmatic geochemical signature. These results strengthen the conclusion that mildly elevated-δ18O magmas existed during the Hadean, supporting the hypothesis that oceans and a habitable Earth existed before 4300 Ma.

     
    more » « less
    Free, publicly-accessible full text available March 28, 2025
  2. Abstract A better characterization of subsurface processes in hydrothermal systems is key to a deeper understanding of fluid-rock interaction and ore-forming mechanisms. Vent systems in oceanic crust close to subduction zones, like at Brothers volcano and in the eastern Manus basin, are known to be especially ore rich. We measured B concentrations and isotope ratios of unaltered and altered lava that were recovered from drilling sites at Brothers volcano and Snowcap (eastern Manus basin) to test their sensitivity for changing alteration conditions with depth. In addition, for Brothers volcano, quartz-water oxygen isotope thermometry was used to constrain variations in alteration temperature with depth. All altered rocks are depleted in B compared to unaltered rocks and point to interaction with a high-temperature (>150°C) hydrothermal fluid. The δ11B values of altered rocks are variable, from slightly lower to significantly higher than those of unaltered rocks. For Brothers volcano, at the Upper Cone, we suggest a gradual evolution from a fluid- to a more rock-dominated system with increasing depth. In contrast, the downhole variations of δ11B at Snowcap as well as δ11B and δ18O variations at the NW Caldera (Site U1530) of Brothers volcano are suggested to indicate changes in water-rock ratios and, in the latter case, also temperature, with depth due to permeability contrasts between different lithology and alteration type boundaries. Furthermore, δ11B values from the NW Caldera (Site U1527) might point to a structural impact on the fluid pathway. These differences in the subseafloor fluid flow regime, which ranges from more pervasive and fluid-controlled to stronger and controlled by lithological and structural features, have significant influence on alteration conditions and may also impact metal precipitation within the sea floor. 
    more » « less
  3. Abstract Subannual climate reconstructions of the Holocene are rare despite the ability of such records to provide a better understanding of the underlying factors that drive subannual climate variability. We used specialized confocal laser fluorescent microscope imaging and automated secondary ion mass spectrometry microanalysis to resolve a seasonal oxygen isotope (δ18O) record of a late Holocene–aged (2.7–2.1 ka) speleothem from mid-continental North America. We did this by measuring intra-band δ18O variability (Δ18O) within 117 annual bands over a 600 yr span of the late Holocene. We interpret a change in Δ18O values after 2.4 ± 0.1 ka to reflect an increase in the amount of winter precipitation. Our study produced direct measurements of past seasonality, offers new insights into shifting seasonal precipitation patterns that occurred during the late Holocene in central North America, and adds a new tool for understanding the complex precipitation and temperature histories of this region. 
    more » « less
  4. Abstract Rationale

    The use of secondary ion mass spectrometry (SIMS) to perform micrometer‐scalein situcarbon isotope (δ13C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole‐shell δ13C values measured by gas source mass spectrometry (GSMS).

    Methods

    Paired SIMS and GSMS δ13C values measured from final chamber fragments of the same shell of the planktic foraminiferOrbulina universaare compared. The SIMS–GSMS δ13C differences (Δ13CSIMS‐GSMS) were determined via paired analysis of hydrogen peroxide‐cleaned fragments of modern cultured specimens and of fossil specimens from deep‐sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT‐253 or a Fisons Optima isotope ratio mass spectrometer (GSMS).

    Results

    Paired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS–GSMS δ13C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13CSIMS‐GSMSvalues of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS–GSMS δ13C difference.

    Conclusions

    The noted Δ13CSIMS‐GSMSvalues are most likely due to matrix effects causing sample–standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105times smaller than that analyzed by GSMS; hence, the extent to which these Δ13CSIMS‐GSMSvalues represent differences in analyte or instrument factors remains unclear.

     
    more » « less
  5. The disappearance of mass-independent sulfur isotope fractionation (S-MIF) within the c. 2.3-billion-year-old (Ga) Rooihoogte Formation has been heralded as a chemostratigraphic marker of permanent atmospheric oxygenation. Reports of younger S-MIF, however, question this narrative, leaving significant uncertainties surrounding the timing, tempo, and trajectory of Earth’s oxygenation. Leveraging a new bulk quadruple S-isotope record, we return to the South African Transvaal Basin in search of support for supposed oscillations in atmospheric oxygen beyond 2.3 Ga. Here, as expected, within the Rooihoogte Formation, our data capture a collapse in Δ 3× S values and a shift from Archean-like Δ 36 S/Δ 33 S slopes to their mass-dependent counterparts. Importantly, the interrogation of a Δ 33 S-exotic grain reveals extreme spatial variability, whereby atypically large Δ 33 S values are separated from more typical Paleoproterozoic values by a subtle grain-housed siderophile-enriched band. This isotopic juxtaposition signals the coexistence of two sulfur pools that were able to escape diagenetic homogenization. These large Δ 33 S values require an active photochemical sulfur source, fingerprinting atmospheric S-MIF production after its documented cessation elsewhere at ∼2.4 Ga. By contrast, the Δ 33 S monotony observed in overlying Timeball Hill Formation, with muted Δ 33 S values (<0.3‰) and predominantly mass-dependent Δ 36 S/Δ 33 S systematics, remains in stark contrast to recent reports of pronounced S-MIF within proximal formational equivalents. If reflective of atmospheric processes, these observed kilometer-scale discrepancies disclose heterogenous S-MIF delivery to the Transvaal Basin and/or poorly resolved fleeting returns to S-MIF production. Rigorous bulk and grain-scale analytical campaigns remain paramount to refine our understanding of Earth’s oxygenation and substantiate claims of post-2.3 Ga oscillations in atmospheric oxygen. 
    more » « less
  6. Paleotemperatures based on δ18O values derived from belemnites are usually “too cold” compared to other archives and paleoclimate models. This temperature bias represents a significant obstacle in paleoceanographic research. Here we show geochemical evidence that belemnite calcite fibers are composed of two distinct low-Mg calcite phases (CP1, CP2). Phase-specific in situ measurement of δ18O values revealed a systematic offset of up to 2‰ (~8 °C), showing a lead–lag signal between both phases in analyses spaced less than 25 µm apart and a total fluctuation of 3.9‰ (~16 °C) within a 2 cm × 2 cm portion of a Megateuthis (Middle Jurassic) rostrum. We explain this geochemical offset and the lead–lag signal for both phases by the complex biomineralization of the belemnite rostrum. The biologically controlled formation of CP1 is approximating isotope fractionation conditions with ambient seawater to be used for temperature calculation. In contrast, CP2 indicates characteristic non-isotope equilibrium with ambient seawater due to its formation via an amorphous Ca-Mg carbonate precursor at high solid-to-liquid ratio, i.e., limited amounts of water were available during its transformation to calcite, thus suggesting lower formation temperatures. CP2 occludes syn vivo the primary pore space left after formation of CP1. Our findings support paleobiological interpretations of belemnites as shelf-dwelling, pelagic predators and call for a reassessment of paleoceanographic reconstructions based on belemnite stable isotope data. 
    more » « less
  7. Abstract Tellurium-rich (Te) adularia-sericite epithermal Au-Ag deposits are an important current and future source of precious and critical metals. However, the source and evolution of ore-forming fluids in these deposits are masked by traditional bulk analysis of quartz oxygen isotope ratios that homogenize fine-scale textures and growth zones. To advance understanding of the source of Te and precious metals, herein, we use petrographic and cathodoluminescence (CL) images of such textures and growth zones to guide high spatial resolution secondary ion mass spectroscopy (SIMS) oxygen isotope analyses (10 µm spot) and spatially correlated fluid inclusion microthermometric measurements on successive quartz bands in contemporary Te-rich and Te-poor adularia-sericite (-quartz) epithermal Au-Ag vein deposits in northeastern China. The results show that large positive oxygen isotope shifts from –7.1 to +7.7‰ in quartz rims are followed by precipitation of Au-Ag telluride minerals in the Te-rich deposit, whereas small oxygen isotope shifts of only 4‰ (–2.2 to +1.6‰) were detected in quartz associated with Au-Ag minerals in the Te-poor deposits. Moreover, fluid-inclusion homogenization temperatures are higher in comb quartz rims (avg. 266.4 to 277.5 °C) followed by Au-Ag telluride minerals than in previous stages (~250 °C) in the Te-rich deposit. The Te-poor deposit has a consistent temperature (~245 °C) in quartz that pre- and postdates Au-Ag minerals. Together, the coupled increase in oxygen isotope ratios and homogenization temperatures followed by precipitation of Au-Ag tellurides strongly supports that inputs of magmatic fluid containing Au, Ag, and Te into barren meteoric water-dominated flow systems are critical to the formation of Te-rich adularia-sericite epithermal Au-Ag deposits. In contrast, Te-poor adularia-sericite epithermal Au-Ag deposits show little or no oxygen isotope or fluid-inclusion evidence for inputs of magmatic fluid. 
    more » « less