skip to main content


Search for: All records

Creators/Authors contains: "Kounkel, Marina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present a catalogue of 3354 candidate young stars within 500 pc that appear to have been ejected from their parent associations with relative speeds of >5 km s−1. These candidates have been homogeneously selected through performing a 2D spherical traceback of previously identified pre-main-sequence candidates to various star-forming regions, ensuring that the traceback age as well as the estimated age of a star is consistent with the age of the population, and excluding contaminants from the nearby moving groups that follow the dominant velocity currents in the field. Among the identified candidates we identify a number of pairs that appear to have interacted in the process of the ejection; these pairs have similar traceback time, and their trajectory appears to be diametrically opposite from each other, or they have formed a wide binary in the process. As the selection of these candidates is performed solely in 2D, spectral follow-up is necessary for their eventual confirmation. Unfortunately, recently released Gaia DR3 radial velocities appear to be unsuitable for characterizing the kinematics of low-mass stars with ages <100 Myr, as the accretion, activity, and a variety of other spectral features that make them distinct from the more evolved stars do not appear to have been accurately accounted for in the data, resulting in significant artificially inflated scatter in their RV distribution. 
    more » « less
  2. Abstract We present design considerations for the Transiting Exosatellites, Moons, and Planets in Orion (TEMPO) Survey with the Nancy Grace Roman Space Telescope. This proposed 30 days survey is designed to detect a population of transiting extrasolar satellites, moons, and planets in the Orion Nebula Cluster (ONC). The young (1–3 Myr), densely populated ONC harbors about a thousand bright brown dwarfs (BDs) and free-floating planetary-mass objects (FFPs). TEMPO offers sufficient photometric precision to monitor FFPs with M >1 M J for transiting satellites. The survey is also capable of detecting FFPs down to sub-Saturn masses via direct imaging, although follow-up confirmation will be challenging. TEMPO yield estimates include 14 (3–22) exomoons/satellites transiting FFPs and 54 (8–100) satellites transiting BDs. Of this population, approximately 50% of companions would be “super-Titans” (Titan to Earth mass). Yield estimates also include approximately 150 exoplanets transiting young Orion stars, of which >50% will orbit mid-to-late M dwarfs. TEMPO would provide the first census demographics of small exosatellites orbiting FFPs and BDs, while simultaneously offering insights into exoplanet evolution at the earliest stages. This detected exosatellite population is likely to be markedly different from the current census of exoplanets with similar masses (e.g., Earth-mass exosatellites that still possess H/He envelopes). Although our yield estimates are highly uncertain, as there are no known exoplanets or exomoons analogous to these satellites, the TEMPO survey would test the prevailing theories of exosatellite formation and evolution, which limit the certainty surrounding detection yields. 
    more » « less
  3. Abstract

    The interstellar medium (ISM) is turbulent over vast scales and in various phases. In this paper, we study turbulence with different tracers in four nearby star-forming regions: Orion, Ophiuchus, Perseus, and Taurus. We combine the APOGEE-2 and Gaia surveys to obtain the full six-dimensional measurements of positions and velocities of young stars in these regions. The velocity structure functions (VSFs) of the stars show a universal scaling of turbulence. We also obtain Hαgas kinematics in these four regions from the Wisconsin H-Alpha Mapper. The VSFs of the Hαare more diverse compared to those of stars. In regions with recent supernova activities, they show characteristics of local energy injections and higher amplitudes compared to the VSFs of stars and of CO from the literature. Such difference in amplitude of the VSFs can be explained by the different energy and momentum transport from supernovae into different phases of the ISM, thus resulting in higher levels of turbulence in the warm ionized phase traced by Hα. In regions without recent supernova activities, the VSFs of young stars, Hα, and CO are generally consistent, indicating well-coupled turbulence between different phases. Within individual regions, the brighter parts of the Hαgas tend to have a higher level of turbulence than the low-emission parts. Our findings support a complex picture of the Milky Way ISM, where turbulence can be driven at different scales and inject energy unevenly into different phases.

     
    more » « less
  4. Abstract

    Our view of the variety of stellar structures pervading the local Milky Way has been transformed by the application of clustering algorithms to the Gaia catalog. In particular, several stellar streams have been recently discovered that are comprised of hundreds to thousands of stars and span several hundred parsecs. We analyze one such structure, Theia 456, a low-density stellar stream extending nearly 200 pc and 20° across the sky. By supplementing Gaia astrometric data with spectroscopic metallicities from Large Sky Area Multi-Object Fiber Spectroscopic Telescope and photometric rotation periods from the Zwicky Transient Facility and the Transiting Exoplanet Survey Satellite, we establish Theia 456's radial velocity coherence, and we find strong evidence that members of Theia 456 have a common age (≃175 Myr), common dynamical origin, and formed from chemically homogeneous prestellar material ([Fe/H] = −0.07 dex). Unlike well-known stellar streams in the Milky Way, which are in its halo, Theia 456 is firmly part of the thin disk. If our conclusions about Theia 456 can be applied to even a small fraction of the remaining ≃8300 independent structures in the Theia catalog, such low-density stellar streams may be ubiquitous. We comment on the implications this has for the nature of star formation throughout the Galaxy.

     
    more » « less
  5. Abstract

    Very young (t≲ 10 Myr) stars possess strong magnetic fields that channel ionized gas from the interiors of their circumstellar disks to the surface of the star. Upon impacting the stellar surface, the shocked gas recombines and emits hydrogen spectral lines. To characterize the density and temperature of the gas within these accretion streams, we measure equivalent widths of Brackett (Br) 11–20 emission lines detected in 1101 APOGEE spectra of 326 likely pre-main-sequence accretors. For sources with multiple observations, we measure median epoch-to-epoch line strength variations of 10% in Br11 and 20% in Br20. We also fit the measured line ratios to predictions of radiative transfer models by Kwan & Fischer. We find characteristic best-fit electron densities ofne= 1011–1012cm−3, and excitation temperatures that are inversely correlated with electron density (fromT∼ 5000 K forne∼ 1012cm−3toT∼ 12,500 K atne∼ 1011cm−3). These physical parameters are in good agreement with predictions from modeling of accretion streams that account for the hydrodynamics and radiative transfer within the accretion stream. We also present a supplementary catalog of line measurements from 9733 spectra of 4255 Brackett emission-line sources in the APOGEE Data Release 17 data set.

     
    more » « less
  6. Abstract

    We use time-resolved spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) to examine the distribution of radial velocity (RV) variations in 249 stars identified as members of the Sagittarius (Sgr) dwarf spheroidal (dSph) galaxy by Hayes et al. We select Milky Way (MW) stars that have stellar parameters (log(g),Teff, and [Fe/H] ) similar to those of the Sagittarius members by means of a k-d tree of dimension 3. We find that the shape of the distribution of RV shifts in Sgr dSph stars is similar to that measured in their MW analogs, but the total fraction of RV variable stars in the Sgr dSph is larger by a factor of ∼2. After ruling out other explanations for this difference, we conclude that the fraction of close binaries in the Sgr dSph is intrinsically higher than in the MW. We discuss the implications of this result for the physical processes leading to the formation of close binaries in dwarf spheroidal and spiral galaxies.

     
    more » « less
  7. Abstract APOGEE spectra offer ≲1 km s −1 precision in the measurement of stellar radial velocities. This holds even when multiple stars are captured in the same spectrum, as happens most commonly with double-lined spectroscopic binaries (SB2s), although random line-of-sight alignments of unrelated stars can also occur. We develop a code that autonomously identifies SB2s and higher order multiples in the APOGEE spectra, resulting in 7273 candidate SB2s, 813 SB3s, and 19 SB4s. We estimate the mass ratios of binaries, and for a subset of these systems with a sufficient number of measurements we perform a complete orbital fit, confirming that most systems with periods of <10 days have circularized. Overall, we find an SB2 fraction ( F SB2 ) ∼ 3% among main-sequence dwarfs, and that there is not a significant trend in F SB2 with temperature of a star. We are also able to recover a higher F SB2 in sources with lower metallicity, however there are some observational biases. We also examine light curves from TESS to determine which of these spectroscopic binaries are also eclipsing. Such systems, particularly those that are also pre- and post-main sequence, are good candidates for a follow-up analysis to determine their masses and temperatures. 
    more » « less
  8. null (Ed.)
    ABSTRACT We use observations from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to explore the relationship between stellar parameters and multiplicity. We combine high-resolution repeat spectroscopy for 41 363 dwarf and subgiant stars with abundance measurements from the APOGEE pipeline and distances and stellar parameters derived using Gaia DR2 parallaxes from Sanders & Das to identify and characterize stellar multiples with periods below 30 yr, corresponding to ΔRVmax ≳ 3 km s−1, where ΔRVmax is the maximum APOGEE-detected shift in the radial velocities. Chemical composition is responsible for most of the variation in the close binary fraction in our sample, with stellar parameters like mass and age playing a secondary role. In addition to the previously identified strong anticorrelation between the close binary fraction and [Fe/H], we find that high abundances of α elements also suppress multiplicity at most values of [Fe/H] sampled by APOGEE. The anticorrelation between α abundances and multiplicity is substantially steeper than that observed for Fe, suggesting C, O, and Si in the form of dust and ices dominate the opacity of primordial protostellar discs and their propensity for fragmentation via gravitational stability. Near [Fe/H] = 0 dex, the bias-corrected close binary fraction (a < 10 au) decreases from ≈100 per cent at [α/H] = −0.2 dex to ≈15 per cent near [α/H] = 0.08 dex, with a suggestive turn-up to ≈20 per cent near [α/H] = 0.2. We conclude that the relationship between stellar multiplicity and chemical composition for sun-like dwarf stars in the field of the Milky Way is complex, and that this complexity should be accounted for in future studies of interacting binaries. 
    more » « less
  9. Abstract The eighteenth data release (DR18) of the Sloan Digital Sky Survey (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs or “Mappers”: the Milky Way Mapper (MWM), the Black Hole Mapper (BHM), and the Local Volume Mapper. This data release contains extensive targeting information for the two multiobject spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration and scientifically focused components. DR18 also includes ∼25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024