skip to main content


Search for: All records

Creators/Authors contains: "Laskar, Tanmoy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Identifying the sites of r-process nucleosynthesis, a primary mechanism of heavy element production, is a key goal of astrophysics. The discovery of the brightest gamma-ray burst (GRB) to date, GRB 221009A, presented an opportunity to spectroscopically test the idea that r-process elements are produced following the collapse of rapidly rotating massive stars. Here we present James Webb Space Telescope observations of GRB 221009A obtained +168 and +170 rest-frame days after the gamma-ray trigger, and demonstrate that they are well described by a SN 1998bw-like supernova (SN) and power-law afterglow, with no evidence for a component from r-process emission. The SN, with a nickel mass of approximately 0.09 M, is only slightly fainter than the brightness of SN 1998bw at this phase, which indicates that the SN is not an unusual GRB-SN. This demonstrates that the GRB and SN mechanisms are decoupled and that highly energetic GRBs are not likely to produce significant quantities of r-process material, which leaves open the question of whether explosions of massive stars are key sources of r-process elements. Moreover, the host galaxy of GRB 221009A has a very low metallicity of approximately 0.12 Zand strong H2emission at the explosion site, which is consistent with recent star formation, hinting that environmental factors are responsible for its extreme energetics.

     
    more » « less
  2. Abstract We present 1.3 mm (230 GHz) observations of the recent and nearby Type II supernova, SN 2023ixf, obtained with the Submillimeter Array (SMA) at 2.6–18.6 days after explosion. The observations were obtained as part the SMA Large Program, POETS (Pursuit of Extragalactic Transients with the SMA). We do not detect any emission at the location of SN 2023ixf, with the deepest limits of L ν (230 GHz) ≲ 8.6 × 10 25 erg s −1 Hz −1 at 2.7 and 7.7 days, and L ν (230 GHz) ≲ 3.4 × 10 25 erg s −1 Hz −1 at 18.6 days. These limits are about a factor of 2 times dimmer than the millimeter emission from SN 2011dh (IIb), about 1 order of magnitude dimmer compared to SN 1993J (IIb) and SN 2018ivc (IIL), and about 30 times dimmer than the most luminous nonrelativistic SNe in the millimeter band (Type IIb/Ib/Ic). Using these limits in the context of analytical models that include synchrotron self-absorption and free–free absorption, we place constraints on the proximate circumstellar medium around the progenitor star, to a scale of ∼2 × 10 15 cm, excluding the range M ̇ ∼ few × 10 − 6 − 10 − 2 M ⊙ yr −1 (for a wind velocity, v w = 115 km s −1 , and ejecta velocity, v ej ∼ (1 − 2) × 10 4 km s −1 ). These results are consistent with an inference of the mass-loss rate based on optical spectroscopy (∼2 × 10 −2 M ⊙ yr −1 for v w = 115 km s −1 ), but are in tension with the inference from hard X-rays (∼7 × 10 −4 M ⊙ yr −1 for v w = 115 km s −1 ). This tension may be alleviated by a nonhomogeneous and confined CSM, consistent with results from high-resolution optical spectroscopy. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Abstract GRB 221009A ( z = 0.151) is one of the closest known long γ -ray bursts (GRBs). Its extreme brightness across all electromagnetic wavelengths provides an unprecedented opportunity to study a member of this still-mysterious class of transients in exquisite detail. We present multiwavelength observations of this extraordinary event, spanning 15 orders of magnitude in photon energy from radio to γ -rays. We find that the data can be partially explained by a forward shock (FS) from a highly collimated relativistic jet interacting with a low-density, wind-like medium. Under this model, the jet’s beaming-corrected kinetic energy ( E K ∼ 4 × 10 50 erg) is typical for the GRB population. The radio and millimeter data provide strong limiting constraints on the FS model, but require the presence of an additional emission component. From equipartition arguments, we find that the radio emission is likely produced by a small amount of mass (≲6 × 10 −7 M ⊙ ) moving relativistically (Γ ≳ 9) with a large kinetic energy (≳10 49 erg). However, the temporal evolution of this component does not follow prescriptions for synchrotron radiation from a single power-law distribution of electrons (e.g., in a reverse shock or two-component jet), or a thermal-electron population, perhaps suggesting that one of the standard assumptions of afterglow theory is violated. GRB 221009A will likely remain detectable with radio telescopes for years to come, providing a valuable opportunity to track the full lifecycle of a powerful relativistic jet. 
    more » « less
  4. Abstract

    We present the discovery of the first millimeter afterglow of a short-durationγ-ray burst (SGRB) and the first confirmed afterglow of an SGRB localized by the GUANO system on Swift. Our Atacama Large Millimeter/Sub-millimeter Array (ALMA) detection of SGRB 211106A establishes an origin in a faint host galaxy detected in Hubble Space Telescope imaging at 0.7 ≲z≲ 1.4. From the lack of a detectable optical afterglow, coupled with the bright millimeter counterpart, we infer a high extinction,AV≳ 2.6 mag along the line of sight, making this one of the most highly dust-extincted SGRBs known to date. The millimeter-band light curve captures the passage of the synchrotron peak from the afterglow forward shock and reveals a jet break attjet=29.24.0+4.5days. For a presumed redshift ofz= 1, we infer an opening angle,θjet= (15.°5 ± 1.°4), and beaming-corrected kinetic energy oflog(EK/erg)=51.8±0.3, making this one of the widest and most energetic SGRB jets known to date. Combining all published millimeter-band upper limits in conjunction with the energetics for a large sample of SGRBs, we find that energetic outflows in high-density environments are more likely to have detectable millimeter counterparts. Concerted afterglow searches with ALMA should yield detection fractions of 24%–40% on timescales of ≳2 days at rates of ≈0.8–1.6 per year, outpacing the historical discovery rate of SGRB centimeter-band afterglows.

     
    more » « less
  5. null (Ed.)
  6. Abstract We present deep X-ray and radio observations of the fast blue optical transient (FBOT) AT 2020xnd/ZTF 20acigmel at z = 0.2433 from 13 days to 269 days after explosion. AT 2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT 2018cow. AT 2020xnd shows luminous radio emission reaching L ν ≈ 8 × 10 29 erg s −1 Hz −1 at 20 GHz and 75 days post-explosion, accompanied by luminous and rapidly fading soft X-ray emission peaking at L X ≈ 6 × 10 42 erg s −1 . Interpreting the radio emission in the context of synchrotron radiation from the explosion’s shock interaction with the environment, we find that AT 2020xnd launched a high-velocity outflow ( v ∼ 0.1 c –0.2 c ) propagating into a dense circumstellar medium (effective M ̇ ≈ 10 − 3 M ⊙ yr −1 for an assumed wind velocity of v w = 1000 km s −1 ). Similar to AT 2018cow, the detected X-ray emission is in excess compared to the extrapolated synchrotron spectrum and constitutes a different emission component, possibly powered by accretion onto a newly formed black hole or neutron star. These properties make AT 2020xnd a high-redshift analog to AT 2018cow, and establish AT 2020xnd as the fourth member of the class of optically luminous FBOTs with luminous multiwavelength counterparts. 
    more » « less
  7. ABSTRACT AT 2018hyz (= ASASSN-18zj) is a tidal disruption event (TDE) located in the nucleus of a quiescent E+A galaxy at a redshift of z = 0.04573, first detected by the All-Sky Automated Survey for Supernovae (ASAS-SN). We present optical+UV photometry of the transient, as well as an X-ray spectrum and radio upper limits. The bolometric light curve of AT 2018hyz is comparable to other known TDEs and declines at a rate consistent with a t−5/3 at early times, emitting a total radiated energy of E = 9 × 1050 erg. An excess bump appears in the UV light curve about 50 d after bolometric peak, followed by a flattening beyond 250 d. We detect a constant X-ray source present for at least 86 d. The X-ray spectrum shows a total unabsorbed flux of ∼4 × 10−14 erg cm−2 s−1 and is best fit by a blackbody plus power-law model with a photon index of Γ = 0.8. A thermal X-ray model is unable to account for photons >1 keV, while a radio non-detection favours inverse-Compton scattering rather than a jet for the non-thermal component. We model the optical and UV light curves using the Modular Open-Source Fitter for Transients (MOSFiT) and find a best fit for a black hole of 5.2 × 106 M⊙ disrupting a 0.1 M⊙ star; the model suggests the star was likely only partially disrupted, based on the derived impact parameter of β = 0.6. The low optical depth implied by the small debris mass may explain how we are able to see hydrogen emission with disc-like line profiles in the spectra of AT 2018hyz (see our companion paper). 
    more » « less