skip to main content


Search for: All records

Creators/Authors contains: "McWethy, David B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Growing season temperatures play a crucial role in controlling treeline elevation at regional to global scales. However, understanding of treeline dynamics in response to long-term changes in temperature is limited. In this study, we analyze pollen, plant macrofossils, and charcoal preserved in organic layers within a 10,400-year-old ice patch and in sediment from a 6000-year-old wetland located above present-day treeline in the Beartooth Mountains, Wyoming, to explore the relationship between Holocene climate variability and shifts in treeline elevation. Pollen data indicate a lower-than-present treeline between 9000 and 6200 cal yr BP during the warm, dry summer and cold winter conditions of the early Holocene. Increases in arboreal pollen at 6200 cal yr BP suggest an upslope treeline expansion when summers became cooler and wetter. A possible hiatus in the wetland record at ca. 4200–3000 cal yr BP suggests increased snow and ice cover at high elevations and a lowering of treeline. Treeline position continued to fluctuate with growing season warming and cooling during the late-Holocene. Periods of high fire activity correspond with times of increased woody cover at high elevations. The two records indicate that climate was an important driver of vegetation and treeline change during the Holocene. Early Holocene treeline was governed by moisture limitations, whereas late-Holocene treeline was sensitive to increases in growing season temperatures. Climate projections for the region suggest warmer temperatures could decrease effective growing season moisture at high elevations resulting in a reduction of treeline elevation. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Abstract

    Herbivores and fire are important consumers of plant biomass that influence vegetation structure, nutrient cycling, and biodiversity globally. Departures from historic biomass consumption patterns due to wild herbivore losses, livestock proliferation, and altered fire regimes can have critical ecological consequences. We set out to (i) understand how consumer dominance and prevalence responded to spatial and temporal moisture gradients in Holocene North America and (ii) examine how past and present consumer dominance patterns in North America compare to less altered consumer regimes of modern Sub-Saharan Africa. We developed long-term records of bison abundance and biomass burning in Holocene midcontinent North America and compared these records to reconstructions of moisture availability and vegetation structure. We used these reconstructions to characterize bison and fire prevalence across associated moisture and vegetation gradients. We found that bison herbivory dominated biomass consumption in dry settings whereas fire dominated in wetter environments. Historical distributions of herbivory and burning in midcontinent North America resemble those of contemporary Sub-Saharan Africa, suggesting disturbance feedbacks and interactions regulate long-term consumer dynamics. Comparisons of consumer dynamics in contemporary North America with Holocene North America and Sub-Saharan Africa also reveal that fire is functionally absent from regions where it was once common, with profound ecological implications.

     
    more » « less
  3. Introduction Tree defense characteristics play a crucial role in modulating conifer bark beetle interactions, and there is a growing body of literature investigating factors mediating tree growth and resin-based defenses in conifers. A subset of studies have looked at relationships between tree growth, resin duct morphology and climate; however, these studies are almost exclusively from lower-elevation, moisture-limited systems. The relationship between resin ducts and climate in higher-elevation, energy-limited ecosystems is currently poorly understood. Methods In this study, we: (1) evaluated the relationship between biological trends in tree growth, resin duct anatomy, and climatic variability and (2) determined if tree growth and resin duct morphology of whitebark pine, a high-elevation conifer of management concern, is constrained by climate and/or regional drought conditions. Results We found that high-elevation whitebark pine trees growing in an energy-limited system experienced increased growth and defense under warmer and regionally drier conditions, with climate variables explaining a substantive proportion of variation (∼20–31%) in tree diameter growth and resin duct anatomy. Discussion Our results suggest that whitebark pine growth and defense was historically limited by short growing seasons in high-elevation environments; however, this relationship may change in the future with prolonged warming conditions. 
    more » « less
  4. null (Ed.)
    The unprecedented size of the 2017 wildfires that burned nearly 600,000 hectares of central Chile highlight a need to better understand the climatic conditions under which large fires develop. Here we evaluate synoptic atmospheric conditions at the surface and free troposphere associated with anomalously high (active) versus low (inactive) months of area burned in south-central Chile (ca. 32–41° S) from the Chilean Forest Service (CONAF) record of area burned from 1984–2018. Active fire months are correlated with warm surface temperatures, dry conditions, and the presence of a circumpolar assemblage of high-pressure systems located ca. 40°–60° S. Additionally, warm surface temperatures associated with active fire months are linked to reduced strength of cool, onshore westerly winds and an increase in warm, downslope Andean Cordillera easterly winds. Episodic warm downslope winds and easterly wind anomalies superimposed on long-term warming and drying trends will continue to create conditions that promote large fires in south-central Chile. Identifying the mechanisms responsible for easterly wind anomalies and determining whether this trend is strengthening due to synoptic-scale climatic changes such as the poleward shift in Southern Hemisphere westerly winds will be critical for anticipating future large fire activity in south-central Chile. 
    more » « less
  5. null (Ed.)