Abstract Downslope wind‐driven fires have resulted in many of the wildfire disasters in the western United States and represent a unique hazard to infrastructure and human life. We analyze the co‐occurrence of wildfires and downslope winds across the western United States (US) during 1992–2020. Downslope wind‐driven fires accounted for 13.4% of the wildfires and 11.9% of the burned area in the western US yet accounted for the majority of local burned area in portions of southern California, central Washington, and the front range of the Rockies. These fires were predominantly ignited by humans, occurred closer to population centers, and resulted in outsized impacts on human lives and infrastructure. Since 1999, downslope wind‐driven fires have accounted for 60.1% of structures and 52.4% of human lives lost in wildfires in the western US. Downslope wind‐driven fires occurred under anomalously dry fuels and exhibited a seasonality distinct from other fires—occurring primarily in the spring and fall. Over 1992–2020, we document a 25% increase in the annual number of downslope wind‐driven fires and a 140% increase in their respective annual burned area, which partially reflects trends toward drier fuels. These results advance our understanding of the importance of downslope winds in driving disastrous wildfires that threaten populated regions adjacent to mountain ranges in the western US. The unique characteristics of downslope wind‐driven fires require increased fire prevention and adaptation strategies to minimize losses and incorporation of changing human‐ignitions, fuel availability and dryness, and downslope wind occurrence to elucidate future fire risk. 
                        more » 
                        « less   
                    
                            
                            Broad-Scale Surface and Atmospheric Conditions during Large Fires in South-Central Chile
                        
                    
    
            The unprecedented size of the 2017 wildfires that burned nearly 600,000 hectares of central Chile highlight a need to better understand the climatic conditions under which large fires develop. Here we evaluate synoptic atmospheric conditions at the surface and free troposphere associated with anomalously high (active) versus low (inactive) months of area burned in south-central Chile (ca. 32–41° S) from the Chilean Forest Service (CONAF) record of area burned from 1984–2018. Active fire months are correlated with warm surface temperatures, dry conditions, and the presence of a circumpolar assemblage of high-pressure systems located ca. 40°–60° S. Additionally, warm surface temperatures associated with active fire months are linked to reduced strength of cool, onshore westerly winds and an increase in warm, downslope Andean Cordillera easterly winds. Episodic warm downslope winds and easterly wind anomalies superimposed on long-term warming and drying trends will continue to create conditions that promote large fires in south-central Chile. Identifying the mechanisms responsible for easterly wind anomalies and determining whether this trend is strengthening due to synoptic-scale climatic changes such as the poleward shift in Southern Hemisphere westerly winds will be critical for anticipating future large fire activity in south-central Chile. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10282034
- Date Published:
- Journal Name:
- Fire
- Volume:
- 4
- Issue:
- 2
- ISSN:
- 2571-6255
- Page Range / eLocation ID:
- 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract High surface temperatures are important in Antarctica because of their role in ice melt and sea level rise. We investigate a high temperature event in December 1989 that gave record temperatures in coastal East Antarctica between 60° and 100°E. The high temperatures were associated with a pool of warm lower tropospheric air with December temperature anomalies of >14°C that developed in two stages over the Amery Ice Shelf. First, there was near‐record poleward warm advection within an atmospheric river. Second, synoptically driven downslope flow from the interior reached unprecedented December strength over a large area, leading to strong descent and further warming in the coastal region. The coastal easterly winds were unusually deep and strong, and the warm pool was advected westwards, giving a short period of high temperatures at coastal locations, including a surface temperature of 9.3°C at Mawson, the second highest in its 66‐year record.more » « less
- 
            Abstract Several very large high‐impact fires burned nearly 4,000 km2of mesic forests in western Oregon during September 7–9, 2020. While infrequent, very large high‐severity fires have occurred historically in western Oregon, the extreme nature of this event warrants analyses of climate and meteorological drivers. A strong blocking pattern led to an intrusion of dry air and strong downslope east winds in the Oregon Cascades following a warm‐dry 60‐day period that promoted widespread fuel flammability. Viewed independently, both the downslope east winds and fuel dryness were extreme, but not unprecedented. However, the concurrence of these drivers resulted in compound extremes and impacts unmatched in the observational record. We additionally find that most large wildfires in western Oregon since 1900 have similarly coincided with warm‐dry summers during at least moderate east wind events. These results reinforce the importance of incorporating a multivariate lens for compound extremes in assessing wildfire hazard risk.more » « less
- 
            Terrestrial proxies of wind direction spanning the last deglaciation suggest easterly winds were present near the Laurentide Ice Sheet margin in the North American midcontinent. However, the existence and spatial extent of such easterly winds have not been investigated with transient paleoclimate model simulations, which could provide improved dynamical context for interpreting the causes of these winds. Here we assess near-surface winds near the retreating southern Laurentide Ice Sheet margin using iTRACE, a transient simulation of deglacial climate from 20–11 ka. Near the south-central margin, simulated near-surface winds are northeasterly to easterly through the deglaciation, due to katabatic flow off the ice sheet and anticyclonic circulation. As the ice sheet retreats and the Laurentide High moves northeastward and weakens, near-surface northeasterly winds weaken. Meltwater fluxes also influence temperature and sea level pressure over the North Atlantic, leading to easterly wind anomalies over eastern to midwestern North America. The agreement between proxy and model wind directions is promising, although simulated easterly to northeasterly winds extend too far south in iTRACE relative to the proxy data. Agreement is also strongest in winter, spring, and fall, suggesting these may have been seasons with greater aeolian activity.more » « less
- 
            null (Ed.)Abstract The stratospheric quasi-biennial oscillation (QBO) induces temperature anomalies in the lower stratosphere and tropical tropopause layer (TTL) that are cold when lower-stratospheric winds are easterly and warm when winds are westerly. Recent literature has indicated that these QBO temperature anomalies are potentially important in influencing the tropical troposphere, and particularly in explaining the relationship between the QBO and the Madden–Julian oscillation (MJO). The authors examine the variability of QBO temperature anomalies across several time scales using reanalysis and observational datasets. The authors find that, in boreal winter relative to other seasons, QBO temperature anomalies are significantly stronger (i.e., colder in the easterly phase of the QBO and warmer in the westerly phase of the QBO) on the equator, but weaker off the equator. The equatorial and subtropical changes compensate such that meridional temperature gradients and thus (by thermal wind balance) equatorial zonal wind anomalies do not vary in amplitude as the temperature anomalies do. The same pattern of stronger on-equatorial and weaker off-equatorial QBO temperature anomalies is found on decadal time scales: stronger anomalies are seen for 1999–2019 compared to 1979–99. The causes of these changes to QBO temperature anomalies, as well as their possible relevance to the MJO–QBO relationship, are not known.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    