skip to main content


Search for: All records

Creators/Authors contains: "Nittrouer, Jeffrey A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We use in situ measurements of suspended mud to assess the flocculation state of the lowermost freshwater reaches of the Mississippi River. The goal of the study was to assess the flocculation state of the mud in the absence of seawater, the spatial distribution of floc sizes within the river, and to look for seasonal differences between summer and winter. We also examine whether measured floc sizes can explain observed vertical distributions of mud concentration through a Rouse profile analysis. Data were collected at the same locations during summer and winter at similar discharges and suspended sediment concentrations. Measurements showed that the mud in both seasons was flocculated and that the floc size could reasonably be represented by a cross‐sectional averaged value as sizes varied little over the flow depth or laterally across the river at a given station. Depth‐averaged floc sizes ranged from 75 to 200 microns and increased slightly moving downriver as turbulence levels dropped. On average, flocs were 40 microns larger during summer than in winter, likely due to enhanced microbial activity associated with warmer water. Floc size appeared to explain vertical variations in mud concentration profiles when the bed was predominately composed of sand. Average mud settling velocities for these cases ranged from 0.1 to 0.5 mm/s. However, Rouse‐estimated settling velocities ranged from 1 to 3 mm/s at two stations during winter where the bed was composed of homogeneous mud. These values exceeded the size‐based estimates of settling velocity.

     
    more » « less
  2. Abstract

    River dams provide many benefits, including flood control. However, due to constantly evolving channel morphology, downstream conveyance of floodwaters following dam closure is difficult to predict. Here, we test the hypothesis that the incised, enlarged channel downstream of dams provides enhanced water conveyance, using a case study from the lower Yellow River, China. We find that, although flood stage is lowered for small floods, counterintuitively, flood stage downstream of a dam can be amplified for moderate and large floods. This arises because bed incision is accompanied by sediment coarsening, which facilitates development of large dunes that increase flow resistance and reduce velocity relative to pre-dam conditions. Our findings indicate the underlying mechanism for such flood amplification may occur in >80% of fine-grained rivers, and suggest the need to reconsider flood control strategies in such rivers worldwide.

     
    more » « less
  3. Incising rivers may be confined by low-slope, erodible hillslopes or steep, resistant sidewalls. In the latter case, the system forms a canyon. We present a morphodynamic model that includes the essential elements of a canyon incising into a plateau, including 1) abrasion-driven channel incision, 2) migration of a canyon-head knickpoint, 3) sediment feed from an alluvial channel upstream of the knickpoint, and 4) production of sediment by sidewall collapse. We calculate incision in terms of collision of clasts with the bed. We calculate knickpoint migration using a moving-boundary formulation that allows a slope discontinuity where the channel head meets an alluvial plateau feeder channel. Rather than modeling sidewall collapse events, we model long-term behavior using a constant sidewall slope as the channel incises. Our morphodynamic model specifically applies to canyon, rather than river–hillslope evolution. We implement it for Rainbow Canyon, CA. Salient results are as follows: 1) Sediment supply from collapsing canyon sidewalls can be substantially larger than that supplied from the feeder channel on the plateau. 2) For any given quasi-equilibrium canyon bedrock slope, two conjugate slopes are possible for the alluvial channel upstream, with the lower of the two corresponding to a substantially lower knickpoint migration rate and higher preservation potential. 3) Knickpoint migration occurs at a substantially faster time scale than regrading of the bedrock channel itself, underlying the significance of disequilibrium processes. Although implemented for constant climactic conditions, the model warrants extension to long-term climate variation.

     
    more » « less
  4. Abstract

    Despite a multitude of models predicting sediment transport dynamics in open‐channel flow, self‐organized vertical density stratification that dampens flow turbulence due to the interaction between fluid and sediment has not been robustly validated with field observations from natural rivers. Turbulence‐suppressing density stratification can develop in channels with low channel‐bed slope and high sediment concentration. As the Yellow River, China, maintains one of the highest sediment loads in the world for a low sloping system, this location is ideal for documenting particle and fluid interactions that give rise to density stratification. Herein, we present analyses from a study conducted over a range of discharge conditions (e.g., low flow, rising limb, and flood peak) from a lower reach of the Yellow River, whereby water samples were collected at targeted depths to measure sediment concentration and, simultaneously, velocity measurements were collected throughout the flow depth. Importantly, sediment concentration varied by an order of magnitude between base and flood flows. By comparing measured concentration and velocity profiles to predictive models, we show that the magnitude of density stratification increases with sediment concentration. Furthermore, a steady‐state calculation of sediment suspension is used to determine that sediment diffusivity increases with grain size. Finally, we calculate concentration and velocity profiles, showing that steady‐state sediment suspensions are reliably predicted over a range of stratification conditions larger than had been previously documented in natural river flows. We determine that the magnitude of density stratification can be predicted by a function considering an entrainment parameter, sediment concentration, and bed slope.

     
    more » « less
  5. Abstract

    An inexpensive and compact underwater digital camera imaging system was developed to collect in situ high resolution images of flocculated suspended sediment at depths of up to 60 meters. The camera has a field of view of 3.7 × 2.8 mm and can resolve particles down to 5 . Depending on the degree of flocculation, the system is capable of accurately sizing particles to concentrations up to 500 mg/L. The system is fast enough to allow for profiling whereby size distributions of suspended particles and flocs can be provided at multiple verticals within the water column over a relatively short amount of time (approximately 15 min for a profile of 15 m). Using output from image processing routines, methods are introduced to estimate the mass suspended sediment concentration (SSC) from the images and to separate identified particles into sand and mud floc populations. The combination of these two methods allows for the size and concentration estimates of each fraction independently. The camera and image analysis methods are used in both the laboratory and the Mississippi River for development and testing. Output from both settings are presented in this study.

     
    more » « less
  6. Fine-grained sediment (grain size under 2,000 μm) builds floodplains and deltas, and shapes the coastlines where much of humanity lives. However, a universal, physically based predictor of sediment flux for fine-grained rivers remains to be developed. Herein, a comprehensive sediment load database for fine-grained channels, ranging from small experimental flumes to megarivers, is used to find a predictive algorithm. Two distinct transport regimes emerge, separated by a discontinuous transition for median bed grain size within the very fine sand range (81 to 154 μm), whereby sediment flux decreases by up to 100-fold for coarser sand-bedded rivers compared to river with silt and very fine sand beds. Evidence suggests that the discontinuous change in sediment load originates from a transition of transport mode between mixed suspended bed load transport and suspension-dominated transport. Events that alter bed sediment size near the transition may significantly affect fluviocoastal morphology by drastically changing sediment flux, as shown by data from the Yellow River, China, which, over time, transitioned back and forth 3 times between states of high and low transport efficiency in response to anthropic activities.

     
    more » « less
  7. Abstract

    Reduced sediment supply and rising sea levels are driving land submergence on deltas worldwide, motivating engineering practices that divert water and sediment to sustain coastal landforms. However, lobe response following channel abandonment by diversions has not been constrained by field‐scale studies. Herein, avulsion and engineered diversion scenarios are explored for the Huanghe delta (China), where three lobes were abandoned in the last 40 yr. Two lobes were completely cut off by diversions, and one naturally by an avulsion. Shoreline retreat rates are strikingly different: ∼400 m/yr for diverted lobes and ∼90 m/yr for avulsed lobe. We hypothesize that this variability is linked to vegetal cover across lobes, and therefore the capacity to buffer hydrodynamic reworking of shoreface sediment. Furthermore, the vegetal cover is related to lobe salinity and elevation, which vary by abandonment style. We offer this as a case study to inform about the efficacy of future delta diversions.

     
    more » « less
  8. Abstract

    Channel bifurcations control the distribution of water and sediment in deltas, and the routing of these materials facilitates land building in coastal regions. Yet few practical methods exist to provide accurate predictions of flow partitioning at multiple bifurcations within a distributary channel network. Herein, multiple nodal relations that predict flow partitioning at individual bifurcations, utilizing various hydraulic and channel planform parameters, are tested against field data collected from the Selenga River delta, Russia. The data set includes 2.5 months of time‐continuous, synoptic measurements of water and sediment discharge partitioning covering a flood hydrograph. Results show that width, sinuosity, and bifurcation angle are the best remotely sensed, while cross‐sectional area and flow depth are the best field measured nodal relation variables to predict flow partitioning. These nodal relations are incorporated into a graph model, thus developing a generalized framework that predicts partitioning of water discharge and total, suspended, and bedload sediment discharge in deltas. Results from the model tested well against field data produced for the Wax Lake, Selenga, and Lena River deltas. When solely using remotely sensed variables, the generalized framework is especially suitable for modeling applications in large‐scale delta systems, where data and field accessibility are limited.

     
    more » « less
  9. Abstract

    Grounding‐zone wedges (GZWs) mark the grounding terminus of flowing marine‐based ice streams and, in the presence of an ice shelf, the transition from grounded ice to floating ice. The morphology and stratigraphy of GZWs is predominantly constrained by seafloor bathymetry, seismic data, and sediment cores from deglaciated continental shelves; however, due to minimal constraints on GZW sedimentation processes, there remains a general lack of knowledge concerning the production of these landforms. Herein, outcrop observations are provided of GZWs from Whidbey Island in the Puget Lowlands (Washington State, USA). These features are characterized by prograded diamictons bounded by glacial unconformities, whereby the lower unconformity indicates glacial advance of the southern Cordilleran Ice Sheet and the upper unconformity indicates locally restricted ice advance during GZW growth; the consistent presence of an upper unconformity supports the hypothesis that GZWs facilitate ice advance during landform construction. Based on outcrop stratigraphy, GZW construction is dominated by sediment transport of deformation till and melt‐out of entrained basal debris at the grounding line. This material may be subsequently remobilized by debris flows. Additionally, there is evidence for subglacial meltwater discharge at the grounding line, as well as rhythmically bedded silt and sand, indicating possible tidal pumping at the grounding line. A series of GZWs on Whidbey Island provides evidence of punctuated ice sheet movement during retreat, rather than a rapid ice sheet lift‐off. The distance between adjacent GZWs of 102–103 m and the consistency in their size relative to modern ice stream grounding lines suggests that individual wedges formed over decades to centuries. © 2018 John Wiley & Sons, Ltd.

     
    more » « less
  10. River deltas grow by repeating cycles of lobe development punctuated by channel avulsions, so that over time, lobes amalgamate to produce a composite landform. Existing models have shown that backwater hydrodynamics are important in avulsion dynamics, but the effect of lobe progradation on avulsion frequency and location has yet to be explored. Herein, a quasi‐2‐D numerical model incorporating channel avulsion and lobe development cycles is developed. The model is validated by the well‐constrained case of a prograding lobe on the Yellow River delta, China. It is determined that with lobe progradation, avulsion frequency decreases, and avulsion length increases, relative to conditions where a delta lobe does not prograde. Lobe progradation lowers the channel bed gradient, which results in channel aggradation over the delta topset that is focused farther upstream, shifting the avulsion location upstream. Furthermore, the frequency and location of channel avulsions are sensitive to the threshold in channel bed superelevation that triggers an avulsion. For example, avulsions occur less frequently with a larger superelevation threshold, resulting in greater lobe progradation and avulsions that occur farther upstream. When the delta lobe length prior to avulsion is a moderate fraction of the backwater length (0.3–), the interplay between variable water discharge and lobe progradation together set the avulsion location, and a model capturing both processes is necessary to predict avulsion timing and location. While this study is validated by data from the Yellow River delta, the numerical framework is rooted in physical relationships and can therefore be extended to other deltaic systems.

     
    more » « less