skip to main content


Search for: All records

Creators/Authors contains: "Ocker, Stella Koch"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Galactic electron density model NE2001 describes the multicomponent ionized structure of the Milky Way interstellar medium. NE2001 forward models the dispersion and scattering of compact radio sources, including pulsars, fast radio bursts, active galactic nuclei, and masers, and the model is routinely used to predict the distances of radio sources lacking independent distance measures. Here we present the open-source package NE2001p, a fully Python implementation of NE2001. The model parameters are identical to NE2001 but the computational architecture is optimized for Python, yielding small (<1%) numerical differences between NE2001p and the Fortran code. NE2001p can be used on the command-line and through Python scripts available on PyPI. Future package releases will include modular extensions aimed at providing short-term improvements to model accuracy, including a modified thick disk scale height and additional clumps and voids. This implementation of NE2001 is a springboard to a next-generation Galactic electron density model now in development.

     
    more » « less
    Free, publicly-accessible full text available January 9, 2025
  2. ABSTRACT

    Observations of pulsar scintillation are among the few astrophysical probes of very small-scale (≲ au) phenomena in the interstellar medium (ISM). In particular, characterization of scintillation arcs, including their curvature and intensity distributions, can be related to interstellar turbulence and potentially overpressurized plasma in local ISM inhomogeneities, such as supernova remnants, H ii regions, and bow shocks. Here we present a survey of eight pulsars conducted at the Five-hundred-metre Aperture Spherical Telescope (FAST), revealing a diverse range of scintillation arc characteristics at high sensitivity. These observations reveal more arcs than measured previously for our sample. At least nine arcs are observed toward B1929+10 at screen distances spanning $\sim 90~{{\ \rm per\ cent}}$ of the pulsar’s 361 pc path length to the observer. Four arcs are observed toward B0355+54, with one arc yielding a screen distance as close as ∼105 au (<1 pc) from either the pulsar or the observer. Several pulsars show highly truncated, low-curvature arcs that may be attributable to scattering near the pulsar. The scattering screen constraints are synthesized with continuum maps of the local ISM and other well-characterized pulsar scintillation arcs, yielding a three-dimensional view of the scattering media in context.

     
    more » « less
  3. ABSTRACT

    Fast radio bursts (FRBs) are millisecond-time-scale radio transients, the origins of which are predominantly extragalactic and likely involve highly magnetized compact objects. FRBs undergo multipath propagation, or scattering, from electron density fluctuations on sub-parsec scales in ionized gas along the line of sight. Scattering observations have located plasma structures within FRB host galaxies, probed Galactic and extragalactic turbulence, and constrained FRB redshifts. Scattering also inhibits FRB detection and biases the observed FRB population. We report the detection of scattering times from the repeating FRB 20190520B that vary by up to a factor of 2 or more on minutes to days-long time-scales. In one notable case, the scattering time varied from 7.9 ± 0.4 ms to less than 3.1 ms ($95{{\ \rm per\ cent}}$ confidence) over 2.9 min at 1.45 GHz. The scattering times appear to be uncorrelated between bursts or with dispersion and rotation measure variations. Scattering variations are attributable to dynamic, inhomogeneous plasma in the circumsource medium, and analogous variations have been observed from the Crab pulsar. Under such circumstances, the frequency dependence of scattering can deviate from the typical power law used to measure scattering. Similar variations may therefore be detectable from other FRBs, even those with inconspicuous scattering, providing a unique probe of small-scale processes within FRB environments.

     
    more » « less
  4. Abstract

    Radio wave scattering can cause severe reductions in detection sensitivity for surveys of Galactic and extragalactic fast (∼ms duration) transients. While Galactic sources like pulsars undergo scattering in the Milky Way interstellar medium (ISM), extragalactic fast radio bursts (FRBs) can also experience scattering in their host galaxies and other galaxies intervening in their lines of sight. We assess Galactic and extragalactic scattering horizons for fast radio transients using a combination of NE2001 to model the dispersion measure and scattering time (τ) contributed by the Galactic disk, and independently constructed electron density models for the Galactic halo and other galaxies’ ISMs and halos that account for different galaxy morphologies, masses, densities, and strengths of turbulence. For source redshifts 0.5 ≤zs≤ 1, an all-sky, isotropic FRB population has simulated values ofτ(1 GHz) ranging from ∼1μs to ∼2 ms (90% confidence, observer frame) that are dominated by host galaxies, althoughτcan be ≫2 ms at low Galactic latitudes. A population atzs= 5 has 0.01 ≲τ≲ 300 ms at 1 GHz (90% confidence), dominated by intervening galaxies. About 20% of these high-redshift FRBs are predicted to haveτ> 5 ms at 1 GHz (observer frame), and ≳40% of FRBs betweenzs∼ 0.5–5 haveτ≳ 1 ms forν≤ 800 MHz. Our scattering predictions may be conservative if scattering from circumsource environments is significant, which is possible under specific conditions. The percentage of FRBs selected against from scattering could also be substantially larger than we predict if circumgalactic turbulence causes more small-scale (≪1 au) density fluctuations than observed from nearby halos.

     
    more » « less
  5. Abstract

    A sample of 14 FRBs with measured redshifts and scattering times is used to assess contributions to dispersion and scattering from the intergalactic medium (IGM), galaxy halos, and the disks of host galaxies. The IGM and galaxy halos contribute significantly to dispersion measures (DMs) but evidently not to scattering, which is then dominated by host galaxies. This enables the usage of scattering times for estimating DM contributions from host galaxies and also for a combined scattering–dispersion redshift estimator. Redshift estimation is calibrated using the scattering of Galactic pulsars after taking into account different scattering geometries for Galactic and intergalactic lines of sight. The DM-only estimator has a bias of ∼0.1 and rms error of ∼0.15 in the redshift estimate for an assumed ad hoc value of 50 pc cm−3for the host galaxy’s DM contribution. The combined redshift estimator shows less bias by a factor of 4 to 10 and a 20%–40% smaller rms error. We find that values for the baryonic fraction of the ionized IGMfigm≃ 0.85 ± 0.05 optimize redshift estimation using dispersion and scattering. Our study suggests that 2 of the 14 candidate galaxy associations (FRB 20190523A and FRB 20190611B) should be reconsidered.

     
    more » « less
  6. Abstract

    Context.By providing information about the location of scattering material along the line of sight (LoS) to pulsars, scintillation arcs are a powerful tool for exploring the distribution of ionized material in the interstellar medium (ISM). Here, we present observations that probe the ionized ISM on scales of ∼0.001–30 au.Aims.We have surveyed pulsars for scintillation arcs in a relatively unbiased sample with DM < 100 pc cm−3. We present multifrequency observations of 22 low to moderate DM pulsars. Many of the 54 observations were also observed at another frequency within a few days.Methods.For all observations, we present dynamic spectra, autocorrelation functions, and secondary spectra. We analyze these data products to obtain scintillation bandwidths, pulse broadening times, and arc curvatures.Results.We detect definite or probable scintillation arcs in 19 of the 22 pulsars and 34 of the 54 observations, showing that scintillation arcs are a prevalent phenomenon. The arcs are better defined in low DM pulsars. We show that well-defined arcs do not directly imply anisotropy of scattering. Only the presence of reverse arclets and a deep valley along the delay axis, which occurs in about 20% of the pulsars in the sample, indicates substantial anisotropy of scattering.Conclusions.The survey demonstrates substantial patchiness of the ionized ISM on both astronomical-unit-size scales transverse to the LoS and on ∼100 pc scales along it. We see little evidence for distributed scattering along most lines of sight in the survey.

     
    more » « less
  7. Abstract Stellar bow shocks are observed in a variety of interstellar environments and shaped by the conditions of gas in the interstellar medium (ISM). In situ measurements of turbulent density fluctuations near stellar bow shocks are only achievable with a few observational probes, including H α -emitting bow shocks and the Voyager Interstellar Mission (VIM). In this paper, we examine density variations around the Guitar Nebula, an H α bow shock associated with PSR B2224+65, in tandem with density variations probed by VIM near the boundary of the solar wind and ISM. High-resolution Hubble Space Telescope observations of the Guitar Nebula taken between 1994 and 2006 trace density variations over scales from hundreds to thousands of au, while VIM density measurements made with the Voyager 1 Plasma Wave System constrain variations from thousands of meters to tens of au. The power spectrum of density fluctuations constrains the amplitude of the turbulence wavenumber spectrum near the Guitar Nebula to log 10 C n 2 = − 0.8 ± 0.2 m −20/3 and for the very local ISM probed by Voyager to log 10 C n 2 = − 1.57 ± 0.02 m −20/3 . Spectral amplitudes obtained from multiepoch observations of four other H α bow shocks also show significant enhancements from values that are considered typical for the diffuse, warm ionized medium, suggesting that density fluctuations near these bow shocks may be amplified by shock interactions with the surrounding medium or selection effects that favor H α emission from bow shocks embedded in denser media. 
    more » « less
  8. Abstract

    Recently we found compelling evidence for a gravitational-wave background with Hellings and Downs (HD) correlations in our 15 yr data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes, which produce different interpulsar correlations. In this work, we search the NANOGrav 15 yr data set for evidence of a gravitational-wave background with quadrupolar HD and scalar-transverse (ST) correlations. We find that HD correlations are the best fit to the data and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors ∼2 when comparing HD to ST correlations, and ∼1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025