skip to main content


Search for: All records

Creators/Authors contains: "Tsai, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Utilizing observations from the Electron Losses and Fields Investigation satellites, we present a statistical study of ∼2,000 events in 2019–2020 characterizing the occurrence in magnetic local time (MLT) and latitude of ≥50 keV electron isotropy boundaries (IBs) and associated electron precipitation. The isotropy boundary of an electron of a given energy is the magnetic latitude poleward of which persistent isotropized pitch angle distributions (Jprec/Jperp∼ 1) are first observed to occur, interpreted as resulting from magnetic field‐line curvature scattering in the equatorial magnetosphere. We find that energetic electron IBs can be well‐recognized on the nightside from dusk until dawn, under all geomagnetic activity conditions, with a peak occurrence rate of almost 90% near ∼22 hr in MLT, remaining above 80% from 21 to 01 MLT. The observed IBs span International Geophysical Reference Field (IGRF) magnetic latitudes of 60°–74° with a maximum occurrence between 66° and 71° (Lof 6–8), trending toward lower latitudes and premidnight local times with activity. The precipitating energy flux of ≥50 keV electrons averaged over the IB‐associated latitudes varies over four orders of magnitude, up to 1 erg/cm2‐s, and often includes wide‐energy electron spectra exceeding 1 MeV. The IB‐associated energies and precipitating fluxes also exhibit peak values near midnight for low activity, shifting toward premidnight for elevated activity. The average total precipitating power deposited over the high‐latitude nightside atmosphere (55°–80°; IGRFL ≥ 3) attributed to IBs is 10%–20%, or 10 MW, but at times can approach 100% of the total ≥50 keV electron energy deposition over the entire subauroral and auroral zone region, exceeding 1 GW.

     
    more » « less
  2. Abstract

    We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$\Delta L\sim 0.56$ΔL0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$L\sim 5-7$L57at dusk, while a smaller subset exists at$L\sim 8-12$L812at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$L$L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$\sim 1.45$1.45MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.

     
    more » « less
  3. Abstract

    The magnetospheric substorm is a key mode of flux and energy transport throughout the magnetosphere associated with distinct and repeatable magnetotail dynamical processes and plasma injections. The substorm growth phase is characterized by current sheet thinning and magnetic field reconfiguration around the equatorial plane. The global characteristics of current sheet thinning are important for understanding of magnetotail state right before the onset of magnetic reconnection and of the key substorm expansion phase. In this paper, we investigate this thinning at different radial distances using plasma sheet (PS) energetic (>50 keV) electrons that reach from the equator to low altitudes during their fast (∼1 s) travel along magnetic field lines. We perform a multi‐case study and a statistical analysis of 34 events with near‐equatorial observations of the current sheet thinning by equatorial missions and concurrent, latitudinal crossings of the ionospheric projection of the magnetotail by the low‐altitude Electron Losses and Fields Investigation (ELFIN) CubeSats at approximately the same local time sector. Energetic electron fluxes thus collected by ELFIN provide near‐instantaneous (<5 min duration) radial snapshots of magnetotail fluxes. Main findings of this study confirm the previously proposed concepts with low‐altitude energetic electron measurements: (a) Energy distributions of low‐altitude fluxes are quantitatively close to the near‐equatorial distributions, which justifies the investigation of the magnetotail current sheet reconfiguration using low‐altitude measurements. (b) The magnetic field reconfiguration during the current sheet thinning (which lasts ≥ an hour) results in a rapid shrinking of the low‐altitude projection of the entire PS (from near‐Earth, ∼10RE, to the lunar orbit ∼60RE) to 1–2° of magnetic latitude in the ionosphere. (c) The current sheet dipolarization, common during the substorm onset, is associated with a very quick (∼10 min) change of the tail magnetic field configuration to its dipolar state, as implied by a poleward expansion of the PSPS at low altitudes.

     
    more » « less
  4. Abstract

    Short and intense lower‐band chorus wave packets are ubiquitous in the Earth's outer radiation belt. In this article, we perform various Vlasov hybrid simulations, with one or two triggering waves, to study the generation of short chorus packets/subpackets inside long rising tone elements. We show that the length of the generated short wave packets is consistent with a criterion of resonance non‐overlap for two independent superposed waves, and that these chorus packets have similar characteristics as in Van Allen Probes observations. We find that short wave packets are mainly formed near the middle/end of long rising tones for moderate linear growth rates, and everywhere for stronger linear growth rates. Finally, we analyze an event characterized by Time History of Events and Macroscale Interactions during Substorms spacecraft measurements of chorus rising tones near the equator and simultaneous measurements by low altitude ELFIN CubeSats of precipitating and trapped electron fluxes in the same sector. The measured precipitating electron fluxes are well recovered by test particle simulations performed using measured plasma and wave properties. We show that short chorus wave packets of moderate amplitudes (160–250 pT) essentially lead to a more diffusive‐like transport of 50–200 keV electrons toward the loss cone than long packets. In contrast, long chorus packets are found to produce important nonlinear effects via anomalous trapping, which significantly reduces electron precipitation below 150 keV, especially for higher wave amplitudes.

     
    more » « less
  5. Abstract

    Energetic electron precipitation into Earth's atmosphere is an important process for radiation belt dynamics and magnetosphere‐ionosphere coupling. The most intense form of such precipitation is microbursts—short‐lived bursts of precipitating fluxes detected on low‐altitude spacecraft. Due to the wide energy range of microbursts (from sub‐relativistic to relativistic energies) and their transient nature, they are thought to be predominantly associated with energetic electron scattering into the loss cone via cyclotron resonance with field‐aligned intense whistler‐mode chorus waves. In this study, we show that intense sub‐relativistic microbursts may be generated via electron nonlinear Landau resonance with very oblique whistler‐mode waves. We combine a theoretical model of nonlinear Landau resonance, equatorial observations of intense very oblique whistler‐mode waves, and conjugate low‐altitude observations of <200 keV electron precipitation. Based on model comparison with observed precipitation, we suggest that such sub‐relativistic microbursts occur by plasma sheet (0.1 − 10 keV) electron trapping in nonlinear Landau resonance, resulting in acceleration to ≲200 keV energies and simultaneous transport into the loss cone. The proposed scenario of intense sub‐relativistic (≲200 keV) microbursts demonstrates the importance of very oblique whistler‐mode waves for radiation belt dynamics.

     
    more » « less
  6. Abstract

    In the radiation belts, energetic and relativistic electron precipitation into the atmosphere is expected to be mainly controlled over the long term by quasilinear pitch‐angle scattering by whistler‐mode and electromagnetic ion cyclotron waves. Accordingly, statistical electron lifetimes have been derived from quasilinear diffusion theory on the basis of multi‐year wave statistics. However, the full consistency of such statistical quasilinear models of electron lifetimes with both measured electron lifetimes, spectra of trapped and precipitated electron fluxes, and wave‐driven diffusion rates inferred from electron flux measurements, has not yet been verified in detail. In the present study, we use data from Electron Loss and Fields Investigation (ELFIN) mission CubeSats, launched in September 2018 in low Earth orbit, to carry out such comparisons between quasi‐linear diffusion theory and observed electron flux variations. We show that statistical theoretical lifetime models are in reasonable agreement with electron pitch‐angle diffusion rates inferred from the precipitated to trapped 100 keV electron flux ratio measured by ELFIN after correction for atmospheric backscatter, as well as with timescales of trapped electron flux decay independently measured over several days by ELFIN. The present results demonstrate for the first time a broad consistency between timescales of trapped electron flux decay, the pitch‐angle distribution of precipitated electrons, and quasilinear models of wave‐driven electron loss, showing the reliability of such statistical electron lifetime models parameterized by geomagnetic activity for evaluating electron precipitation into the atmosphere during not too disturbed periods.

     
    more » « less
  7. Abstract

    Resonant interactions of energetic electrons with electromagnetic whistler‐mode waves (whistlers) contribute significantly to the dynamics of electron fluxes in Earth's outer radiation belt. At low geomagnetic latitudes, these waves are very effective in pitch angle scattering and precipitation into the ionosphere of low equatorial pitch angle, tens of keV electrons and acceleration of high equatorial pitch angle electrons to relativistic energies. Relativistic (hundreds of keV), electrons may also be precipitated by resonant interaction with whistlers, but this requires waves propagating quasi‐parallel without significant intensity decrease to high latitudes where they can resonate with higher energy low equatorial pitch angle electrons than at the equator. Wave propagation away from the equatorial source region in a non‐uniform magnetic field leads to ray divergence from the originally field‐aligned direction and efficient wave damping by Landau resonance with suprathermal electrons, reducing the wave ability to scatter electrons at high latitudes. However, wave propagation can become ducted along field‐aligned density peaks (ducts), preventing ray divergence and wave damping. Such ducting may therefore result in significant relativistic electron precipitation. We present evidence that ducted whistlers efficiently precipitate relativistic electrons. We employ simultaneous near‐equatorial and ground‐based measurements of whistlers and low‐altitude electron precipitation measurements by ELFIN CubeSat. We show that ducted waves (appearing on the ground) efficiently scatter relativistic electrons into the loss cone, contrary to non‐ducted waves (absent on the ground) precipitating onlykeV electrons. Our results indicate that ducted whistlers may be quite significant for relativistic electron losses; they should be further studied statistically and possibly incorporated in radiation belt models.

     
    more » « less
  8. null (Ed.)
    Abstract The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (∼93 ∘ inclination), nearly circular, low-Earth (∼450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss cone bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (T orbit ∼ 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with $\Delta $ Δ E/E < 40% and a fluxgate magnetometer (FGM) on a ∼72 cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5 Hz Nyquist (nominally) with <0.3 nT/sqrt(Hz) noise at 1 Hz. The spinning satellites (T spin $\,\sim $ ∼ 3 s) are equipped with magnetorquers (air coils) that permit spin-up or -down and reorientation maneuvers. Using those, the spin axis is placed normal to the orbit plane (nominally), allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250 keV – 5 MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018 and launched by the ELaNa XVIII program on a Delta II rocket (with IceSatII as the primary). Mission operations are currently funded by NASA. Working under experienced UCLA mentors, with advice from The Aerospace Corporation and NASA personnel, more than 250 undergraduates have matured the ELFIN implementation strategy; developed the instruments, satellite, and ground systems and operate the two satellites. ELFIN’s already high potential for cutting-edge science return is compounded by concurrent equatorial Heliophysics missions (THEMIS, Arase, Van Allen Probes, MMS) and ground stations. ELFIN’s integrated data analysis approach, rapid dissemination strategies via the SPace Environment Data Analysis System (SPEDAS), and data coordination with the Heliophysics/Geospace System Observatory (H/GSO) optimize science yield, enabling the widest community benefits. Several storm-time events have already been captured and are presented herein to demonstrate ELFIN’s data analysis methods and potential. These form the basis of on-going studies to resolve the primary mission science objective. Broad energy precipitation events, precipitation bands, and microbursts, clearly seen both at dawn and dusk, extend from tens of keV to >1 MeV. This broad energy range of precipitation indicates that multiple waves are providing scattering concurrently. Many observed events show significant backscattered fluxes, which in the past were hard to resolve by equatorial spacecraft or non-pitch-angle-resolving ionospheric missions. These observations suggest that the ionosphere plays a significant role in modifying magnetospheric electron fluxes and wave-particle interactions. Routine data captures starting in February 2020 and lasting for at least another year, approximately the remainder of the mission lifetime, are expected to provide a very rich dataset to address questions even beyond the primary mission science objective. 
    more » « less