skip to main content


Search for: All records

Creators/Authors contains: "Varney, R. H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present empirical conductance relations that are derived from incoherent scatter radar observations and correlated with all sky imager observations to identify the morphology of the aurora. We use 75,461 events collected using the Poker Flat Incoherent Scatter Radar (PFISR) with associated all sky imagers observations spanning the years 2012–2016. In addition to classifying these events based on auroral morphology, we estimated the Hall and Pedersen conductance and the differential number flux from which the energy flux and the average energy can be calculated. The differential number flux was estimated using the maximum entropy inversion method described in Semeter and Kamalabadi (2005,https://doi.org/10.1029/2004RS003042), but now incorporating the Fang et al. (2010,https://doi.org/10.1029/2010GL045406) ionization model. The main results of this investigation are the power law equations that describe the median, 90th, and 10th percentile Hall and Pedersen conductance as a function of energy flux and average energy. These power law fits are performed for different auroral morphology including all events, discrete, diffuse, and pulsating auroral events. The median Pedersen conductance is found to be in good agreement with past empirical conductance specifications by Robinson et al. (1987,https://doi.org/10.1029/JA092iA03p02565); however, the median Hall conductance from the PFISR observations is found to be larger than the empirical Hall conductance formulas by Robinson et al. (1987,https://doi.org/10.1029/JA092iA03p02565). Pulsating aurora is found to be the most frequently occurring auroral morphology. Furthermore, pulsating aurora has an important contribution to Hall conductance since it has higher average energies than discrete aurora. The results from this investigation are applicable to space weather models and may enable better agreement between model‐data comparisons.

     
    more » « less
  2. Abstract

    We present measurements of the equatorial topside ionosphere above Jicamarca made during extremely low solar flux conditions during the deep solar minimum of 2019–2020. Measurements were made in October, 2019, February, 2020, and September, 2020. The main features observed are a large and extended decrease in noontime temperatures unlike that seen in studies at moderate solar flux levels, predawn ionospheric heating as early as 0300 LT, large day‐to‐day variability in the O+/H+transition height, and negligible helium ion concentration at all altitudes. Data from the Ion Velocity Meter (IVM) instrument onboard the Ionospheric Connection Explorer (ICON) and the Topside Ionospheric Plasma Monitor (SSIES) onboard the Defense Meteorological Satellite Program (DMSP) satellites are used to assess agreement with ISR data and assist with the analysis of the predawn heating phenomena. We also analyze the data in light of the SAMI2‐PE model which shows less agreement with the data than at higher solar flux. The main areas of discrepancy with the data are outlined, such as the absence of significant predawn heating, less pronounced decreases in noontime temperatures, and much higher O+fractions at high altitudes, particularly in September. Finally, a sensitivity analysis of the model to various forcing agents such as neutral winds, plasma drifts, solar flux, and heat flow is performed. A discussion is presented on bridging the discrepancies in future model runs. Novel techniques of clutter removal and noise power bias correction are introduced and described in the appendices.

     
    more » « less
  3. Abstract

    We present high‐resolution Resolute Bay Incoherent Scatter Radar (RISR) measurements in the cusp region during an IMF southward turning. The simultaneous RISR‐N and RISR‐C operation provided 3‐D observations of the dayside polar region, and offered an opportunity to identify the cusp dynamics and polar cap patch formation. Associated with the IMF southward turning, the F‐region density and temperature increased in the cusp, and the increase was particularly evident in the topside ionosphere. The high‐density plasma drifted into the polar cap by an enhanced poleward convection, and became a polar cap patch. The patch plasma was initially dominated by density originating in the cusp, and then later the subauroral ionospheric plasma also contributed to the density enhancement. Weak upflows were present but their contribution within the RISR altitude range was minor. We suggest that the patch source region switches due to dynamic variations of the cusp precipitation and convection from lower latitudes. RISR also detected a flow vortex embedded in the large‐scale convection, which is likely a poleward moving auroral form (PMAF) signature. Joule heating peaked in the cusp E and lower F‐regions. The F‐region Pedersen conductivity increased more than the Hall conductivity, and the high conductivity region extended poleward associated with the patch density enhancement. A 1‐D cusp simulation reproduced the density and temperature enhancements by soft electron precipitation, indicating the importance of soft electron precipitation for the cusp dynamics and the initial part of the patch formation.

     
    more » « less
  4. Abstract

    We have taken a key step in evaluating the importance of ionospheric outflows relative to electrodynamic coupling in the thermosphere’s impact on geospace dynamics. We isolated the thermosphere’s material influence and suppressed electrodynamic feedback in whole geospace simulations by imposing a time‐constant ionospheric conductance in the ionospheric Ohm’s law in a coupled model that combines the multifluid Lyon‐Fedder‐Mobarry magnetosphere model with the Thermosphere Ionosphere Electrodynamic General Circulation Model and the Ionosphere Polar Wind Model that includes both polar wind and transversely accelerated ion species. Numerical experiments were conducted for different thermospheric states parameterized by F10.7 for interplanetary driving representative of the stream interaction region that swept past Earth on March 27, 2003. We demonstrate that thermosphere through its regulation of ionospheric outflows influences magnetosphere‐ionosphere (MI) convection and the ion composition, symmetries, x‐line perimeter and magnetic merging of the magnetosphere. Feedback to the ionosphere‐thermosphere from evolving MI convection, and Alfvénic Poynting fluxes and soft (∼few 100 eV) electron precipitation originating in the magnetosphere, in turn, modify the evolving O+outflow properties. The simulation results identify a variety of observed magnetospheric features that are attributable directly to the thermosphere’s material influence: Asymmetries in O+outflow fluxes and velocities in the pre/postnoon low‐altitude magnetosphere, dawn/duskside lobes and pre/postmidnight plasmasheet; O+distribution of the plasmasheet; magnetic x‐line location and reconnection rate along it. O+outflows during solar maximum conditions (high F10.7) tend to counteract the plasmasheet’s pre/postmidnight asymmetries caused by the night‐to‐day gradient in ionospheric Hall conductance.

     
    more » « less
  5. Abstract

    The extreme substorm event on 5 April 2010 (THEMIS AL = −2,700 nT, called supersubstorm) was investigated to examine its driving processes, the aurora current system responsible for the supersubstorm, and the magnetosphere‐ionosphere‐thermosphere (M‐I‐T) responses. An interplanetary shock created shock aurora, but the shock was not a direct driver of the supersubstorm onset. Instead, the shock with a large southward IMF strengthened the growth phase with substantially larger ionosphere currents, more rapid equatorward motion of the auroral oval, larger ionosphere conductance, and more elevated magnetotail pressure than those for the growth phase of classical substorms. The auroral brightening at the supersubstorm onset was small, but the expansion phase had multistep enhancements of unusually large auroral brightenings and electrojets. The largest activity was an extremely large poleward boundary intensification (PBI) and subsequent auroral streamer, which started ~20 min after the substorm auroral onset during a steady southward IMFBzand elevated dynamic pressure. Those were associated with a substorm current wedge (SCW), plasma sheet flow, relativistic particle injection and precipitation down to the D‐region, total electron content (TEC), conductance, and neutral wind in the thermosphere, all of which were unusually large compared to classical substorms. The SCW did not extend over the entire nightside auroral activity but was localized azimuthally to a few 100 km in the ionosphere around the PBI and streamer. These results reveal the importance of localized magnetotail reconnection for releasing large energy accumulation that can affect geosynchronous satellites and produce the extreme M‐I‐T responses.

     
    more » « less