skip to main content


Search for: All records

Creators/Authors contains: "Wang, Fan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Capillary breakup of cores is an exclusive approach to fabricating fiber-integrated optoelectronics and photonics. A physical understanding of this fluid-dynamic process is necessary for yielding the desired solid-state fiber-embedded multimaterial architectures by design rather than by exploratory search. We discover that the nonlinearly complex and, at times, even chaotic capillary breakup of multimaterial fiber cores becomes predictable when the fiber is exposed to the spatiotemporal temperature profile, imposing a viscosity modulation comparable to the breakup wavelength. The profile acts as a notch filter, allowing only a single wavelength out of the continuous spectrum to develop predictably, following Euler-Lagrange dynamics. We argue that this understanding not only enables designing the outcomes of the breakup necessary for turning it into a technology for materializing fiber-embedded functional systems but also positions a multimaterial fiber as a universal physical simulator of capillary instability in viscous threads.

     
    more » « less
  2. Free, publicly-accessible full text available November 1, 2024
  3. Oceanic eddies accompanied by a significant vertical velocity ( w ) are known to be of great importance for the vertical transport of various climatically, biologically or biogeochemically relevant properties. Using quasi-geostrophic w -thinking to extend the classic “ β -spiral” w -theory for gyre circulations to isolated and nearly symmetric oceanic mesoscale eddies, we propose that their w motion will be dominated by a strong east-west dipole pattern with deep ocean penetrations. Contrasting numerical simulations of idealized isolated eddies together with w -equation diagnostics confirm that the w -dipole is indeed dominated by the “eddy β -spiral” mechanism in the β -plane simulation, whereas this w -dipole expectedly disappears in the f -plane simulation. Analyses of relatively isolated warm and cold eddy examples show good agreement with the proposed mechanism. Our studies further clarify eddy vertical motions, have implications for ocean mixing and vertical transport, and inspire further studies. 
    more » « less
  4. Persistent homology is perhaps the most popular and useful tool offered by topological data analysis, with point-cloud data being the most common setup. Its older cousin, the Euler characteristic curve (ECC) is less expressive, but far easier to compute. It is particularly suitable for analyzing imaging data, and is commonly used in fields ranging from astrophysics to biomedical image analysis. These fields are embracing GPU computations to handle increasingly large datasets. We therefore propose an optimized GPU implementation of ECC computation for 2D and 3D grayscale images. The goal of this paper is twofold. First, we offer a practical tool, illustrating its performance with thorough experimentation, but also explain its inherent shortcomings. Second, this simple algorithm serves as a perfect backdrop for highlighting basic GPU programming techniques that make our implementation so efficient, and some common pitfalls we avoided. This is intended as a step towards a wider usage of GPU programming in computational geometry and topology software. We find this is particularly important as geometric and topological tools are used in conjunction with modern, GPU-accelerated machine learning frameworks. 
    more » « less
  5. Abstract Uncertainties in ocean-mixing parameterizations are primary sources for ocean and climate modeling biases. Due to lack of process understanding, traditional physics-driven parameterizations perform unsatisfactorily in the tropics. Recent advances in the deep-learning method and the new availability of long-term turbulence measurements provide an opportunity to explore data-driven approaches to parameterizing oceanic vertical-mixing processes. Here, we describe a novel parameterization based on an artificial neural network trained using a decadal-long time record of hydrographic and turbulence observations in the tropical Pacific. This data-driven parameterization achieves higher accuracy than current parameterizations, demonstrating good generalization ability under physical constraints. When integrated into an ocean model, our parameterization facilitates improved simulations in both ocean-only and coupled modeling. As a novel application of machine learning to the geophysical fluid, these results show the feasibility of using limited observations and well-understood physical constraints to construct a physics-informed deep-learning parameterization for improved climate simulations. 
    more » « less
  6. Background Human papillomavirus (HPV) is the most common sexually transmitted infection in the United States. HPV can cause genital warts and multiple types of cancers in females. HPV vaccination is recommended to youth age 11 or 12 years before sexual initiation to prevent onset of HPV-related diseases. For females who have not been vaccinated previously, catch-up vaccines are recommended through age 26. The extent to which catch-up vaccines are beneficial in terms of disease prevention and cost-effectiveness is questionable given that some women may have been exposed to HPV before receiving the catch-up vaccination. This study aims to examine whether the cutoff age of catch-up vaccination should be determined based on an individual woman’s risk characteristic instead of a one-size-fits-all age 26. Methods We developed a microsimulation model to evaluate multiple clinical outcomes of HPV vaccination for different women based on a number of personal attributes. We modeled the impact of HPV vaccination at different ages on every woman and tracked her course of life to estimate the clinical outcomes that resulted from receiving vaccines. As the simulation model is risk stratified, we used extreme gradient boosting to build an HPV risk model estimating every woman’s dynamic HPV risk over time for the lifetime simulation model. Results Our study shows that catch-up vaccines still benefit all women after age 26 from the perspective of clinical outcomes. Women facing high risk of HPV infection are expected to gain more health benefits compared with women with low HPV risk. Conclusions From a cancer prevention perspective, this study suggests that the catch-up vaccine after age 26 should be deliberately considered. 
    more » « less
  7. In this review paper, we first provide comprehensive tutorials on two classical methods of polygon-based computer-generated holography: the traditional method (also called the fast-Fourier-transform-based method) and the analytical method. Indeed, other modern polygon-based methods build on the idea of the two methods. We will then present some selective methods with recent developments and progress and compare their computational reconstructions in terms of calculation speed and image quality, among other things. Finally, we discuss and propose a fast analytical method called the fast 3D affine transformation method, and based on the method, we present a numerical reconstruction of a computer-generated hologram (CGH) of a 3D surface consisting of 49,272 processed polygons of the face of a real person without the use of graphic processing units; to the best of our knowledge, this represents a state-of-the-art numerical result in polygon-based computed-generated holography. Finally, we also show optical reconstructions of such a CGH and another CGH of the Stanford bunny of 59,996 polygons with 31,724 processed polygons after back-face culling. We hope that this paper will bring out some of the essence of polygon-based computer-generated holography and provide some insights for future research. 
    more » « less