skip to main content


Search for: All records

Creators/Authors contains: "Wei, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY

    Despite progress in tomographic imaging of Earth's interior, a number of critical questions regarding the large-scale structure and dynamics of the mantle remain outstanding. One of those questions is the impact of phase-boundary undulations on global imaging of mantle heterogeneity and on geodynamic (i.e. convection-related) observables. To address this issue, we developed a joint seismic-geodynamic-mineral physical tomographic inversion procedure that incorporates lateral variations in the depths of the 410- and 660-km discontinuities. This inversion includes S-wave traveltimes, SS precursors that are sensitive to transition-zone topography, geodynamic observables/data (free-air gravity, dynamic surface topography, horizontal divergence of tectonic plates and excess core-mantle boundary ellipticity) and mineral physical constraints on thermal heterogeneity. Compared to joint tomography models that do not include data sensitivity to phase-boundary undulations in the transition zone, the inclusion of 410- and 660-km topography strongly influences the inference of volumetric anomalies in a depth interval that encompasses the transition zone and mid-mantle. It is notable that joint tomography inversions, which include constraints on transition-zone discontinuity topography by seismic and geodynamic data, yield more pronounced density anomalies associated with subduction zones and hotspots. We also find that the inclusion of 410- and 660-km topography may improve the fit to the geodynamic observables, depending on the weights applied to seismic and geodynamic data in the inversions. As a consequence, we find that the amplitude of non-thermal density anomalies required to explain the geodynamic data decreases in most of the mantle. These findings underline the sensitivity of the joint inversions to the inclusion of transition-zone complexity (e.g. phase-boundary topography) and the implications for the inferred non-thermal density anomalies in these depth regions. Finally, we underline that our inferences of 410- and 660-km topography avoid a commonly employed approximation that represents the contribution of volumetric heterogeneity to SS-wave precursor data. Our results suggest that this previously employed correction, based on a priori estimates of upper-mantle heterogeneity, might be a significant source of error in estimating the 410- and 660-km topography.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract

    Multiple physical mechanisms have been proposed to explain the cause of intermediate‐depth and deep earthquakes, but they are still under debate. Source parameters such as stress drop, have the potential to provide insight into their physical mechanisms. We develop a modified spectral decomposition method to analyze 1‐year seismic data from temporary land‐based and ocean bottom seismographs in a complex subduction zone. By applying this method to investigate 1,083 intermediate‐depth and deep earthquakes in the Tonga slab, we successfully resolve the source spectra and stress drops of 743MW2.6–6.0 earthquakes. Although the absolute stress drops are subject to the choices of source model parameters, the relative stress drops are more reliably resolved. The median stress drop of Tonga earthquakes does not change with respect to magnitude but decreases with depth by 2–3 times in two separate depth ranges of 70–250 and 400–600 km, corresponding to intermediate‐depth and deep earthquakes, respectively. The median stress drops show spatial variations, with two high‐stress‐drop (five times higher than the ambient value) regions, coinciding with strong local deformation where the Tonga slab bends or tears. In the Tonga double seismic zone at 120–300 km depths, the median stress drop appears smaller in the lower plane than in the upper plane, suggesting a slower rupture velocity or a higher fluid content in the lower‐plane region. Our results suggest that intermediate‐depth and deep earthquakes in the Tonga slab generally follow the earthquake self‐similar model and favor the fluid‐related embrittlement hypothesis for both groups of earthquakes.

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Abstract Vertical records of ocean-bottom seismographs (OBSs) are usually noisy at low frequencies, and one important noise source is the varying ocean-bottom pressure that results from ocean-surface water waves. The relation between the ocean-bottom pressure and the vertical seafloor motion, called the compliance pressure transfer function (PTF), can be derived using background seismic data. During an earthquake, earthquake signals also generate ocean-bottom pressure fluctuations, and the relation between the ocean-bottom pressure and the vertical seafloor motion is named the seismic PTF in this article. Conventionally, we use the whole pressure records and the compliance PTF to remove the compliance noise; the earthquake-induced pressure and the seismic PTF are ignored, which may distort the original signals. In this article, we analyze the data from 24 OBSs with water depth ranging from 107 to 4462 m. We find that for most stations, the investigated frequency range (0.01–0.2 Hz) can be divided into four bands depending on the water depth. In band (I) of lowest frequencies (<0.11, <0.05, and <0.02  Hz for water depth of 107, 1109, and 2650 m, respectively), the vertical seafloor acceleration is composed mostly of pressure compliance noise, which can be removed using the compliance PTF. The compliance PTF is much smaller than the seismic PTF, so distortion of earthquake signals is negligible. In band (II) of higher frequencies (0.11–0.20, 0.05–0.11, and 0.02–0.05 Hz for water depth of 107, 1109, and 2650 m, respectively), the vertical acceleration and ocean-bottom pressure are largely uncorrelated. In bands (III) and (IV) of even higher frequencies (>0.11 and >0.08  Hz for water depth of 1109 and 2650 m, respectively), the compliance noise is negligible, and the ocean-bottom pressure is mostly caused by the seafloor motion. Thus, the compliance can be safely ignored in frequency band (I). 
    more » « less
  7. null (Ed.)