skip to main content


Search for: All records

Creators/Authors contains: "Yoon, Sungwon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 17, 2024
  2. Free, publicly-accessible full text available May 22, 2024
  3. The design of deep-red to near-infrared (DR-NIR) phosphorescent compounds with high photoluminescence quantum yields ( Φ PL ) is a significant fundamental challenge that impacts applications including optoelectronic devices, imaging, and sensing. Here we show that bis-cyclometalated iridium complexes with electron-rich ancillary ligands can have exceptional quantum yields for DR-NIR phosphorescence (peak λ > 700 nm). Six bis-cyclometalated iridium( iii ) complexes with DR-NIR phosphorescence are described in this work, pairing highly conjugated cyclometalating ligands with electron-rich and sterically encumbered β-ketoiminate (acNac), β-diketiminate (NacNac), and N , N ′-diisopropylbenzamidinate (dipba) ancillary ligands. The photoluminescence spectra and quantum yields are solvent-dependent, consistent with significant charge-transfer character in the emissive excited state. The ancillary ligands perturb the excited-state kinetics relative to closely related compounds, which can lead to enhanced Φ PL values in the DR-NIR region, particularly in toluene solution and in doped polymer films. 
    more » « less
  4. An intriguing new class of two-dimensional (2D) materials based on metal–organic frameworks (MOFs) has recently been developed that displays electrical conductivity, a rarity among these nanoporous materials. The emergence of conducting MOFs raises questions about their fundamental electronic properties, but few studies exist in this regard. Here, we present an integrated theory and experimental investigation to probe the effects of metal substitution on the charge transport properties of M-HITP, where M = Ni or Pt and HITP = 2,3,6,7,10,11-hexaiminotriphenylene. The results show that the identity of the M-HITP majority charge carrier can be changed without intentional introduction of electronically active dopants. We observe that the selection of the metal ion substantially affects charge transport. Using the known structure, Ni-HITP, we synthesized a new amorphous material, a-Pt-HITP, which although amorphous is nevertheless found to be porous upon desolvation. Importantly, this new material exhibits p-type charge transport behavior, unlike Ni-HITP, which displays n-type charge transport. These results demonstrate that both p- and n-type materials can be achieved within the same MOF topology through appropriate choice of the metal ion. 
    more » « less
  5. The design of molecular phosphors with near-unity photoluminescence quantum yields in the low-energy regions of the spectrum, red to near-infrared, is a long-standing challenge. Because of the energy gap law and the quantum mechanical dependence of radiative decay rate on the excited-state energy, compounds which luminesce in this region of the spectrum typically suffer from low quantum yields. In this article, we highlight our group's advances in the design of top-performing cyclometalated iridium complexes which phosphoresce in red to near-infrared regions. The compounds we have introduced in this body of work have the general formula Ir(C^N) 2 (L^X), where C^N is a cyclometalating ligand that controls the photoluminescence color and L^X is a monoanionic chelating ancillary ligand. The Ir(C^N) 2 (L^X) structure type is among the most widely studied and technologically successful classes of molecular phosphors, particularly when L^X = acetylacetonate (acac). In our work we have pioneered the use of electron-rich, nitrogen containing ancillary (L^X) ligands as a means of controlling the excited-state dynamics and optimizing them to give record-breaking phosphorescence quantum yields. This paper progresses through our work in three distinct regions of the spectrum – red, deep-red, and near-infrared – and summarizes the many insights we have gained on the relationships between molecular structure, frontier orbital energies, and excited-state dynamics. 
    more » « less
  6. Five new near-infrared (NIR) phosphorescent bis-cyclometalated iridium( iii ) complexes, partnering highly conjugated cyclometalating ligands with quinoline-derived ancillary ligands, have been developed. These complexes have peak NIR luminescence wavelengths from 711 to 729 nm, with photoluminescence quantum yields ranging from 0.042 to 0.36. 
    more » « less