skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1150872

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    Abstract Given an L –space knot we show that its ϒ function is the Legendre transform of a counting function equivalent to the d –invariants of its large surgeries. The unknotting obstruction obtained for the ϒ function is, in the case of L –space knots, contained in the d –invariants of large surgeries. Generalisations apply for connected sums of L –space knots, which imply that the slice obstruction provided by ϒ on the subgroup of concordance generated by L –space knots is no finer than that provided by the d –invariants. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
    Abstract We show that the integer homology sphere obtained by splicing two nontrivial knot complements in integer homology sphere L-spaces has Heegaard Floer homology of rank strictly greater than one. In particular, splicing the complements of nontrivial knots in the 3-sphere never produces an L-space. The proof uses bordered Floer homology. 
    more » « less