The ϒ function of L –space knots is a Legendre transform
Abstract Given an L –space knot we show that its ϒ function is the Legendre transform of a counting function equivalent to the d –invariants of its large surgeries. The unknotting obstruction obtained for the ϒ function is, in the case of L –space knots, contained in the d –invariants of large surgeries. Generalisations apply for connected sums of L –space knots, which imply that the slice obstruction provided by ϒ on the subgroup of concordance generated by L –space knots is no finer than that provided by the d –invariants.
more »
« less
- Award ID(s):
- 1150872
- PAR ID:
- 10270687
- Date Published:
- Journal Name:
- Mathematical Proceedings of the Cambridge Philosophical Society
- Volume:
- 164
- Issue:
- 3
- ISSN:
- 0305-0041
- Page Range / eLocation ID:
- 401 to 411
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
If a knot K in S^3 admits a pair of truly cosmetic surgeries, we show that the surgery slopes are either ±2 or ±1/q for some value of q that is explicitly determined by the knot Floer homology of K. Moreover, in the former case the genus of K must be 2, and in the latter case there is a bound relating q to the genus and the Heegaard Floer thickness of K. As a consequence, we show that the cosmetic crossing conjecture holds for alternating knots (or more generally, Heegaard Floer thin knots) with genus not equal to 2. We also show that the conjecture holds for any knot K for which each prime summand of K has at most 16 crossings; our techniques rule out cosmetic surgeries in this setting except for slopes ±1 and ±2 on a small number of knots, and these remaining examples can be checked by comparing hyperbolic invariants. These results make use of the surgery formula for Heegaard Floer homology, which has already proved to be a powerful tool for obstructing cosmetic surgeries; we get stronger obstructions than previously known by considering the full graded theory. We make use of a new graphical interpretation of knot Floer homology and the surgery formula in terms of immersed curves, which makes the grading information we need easier to access.more » « less
-
arXiv (Ed.)Using resurgent analysis we offer a novel mathematical perspective on a curious bijection (duality) that has many potential applications ranging from the theory of vertex algebras to the physics of SCFTs in various dimensions, to q-series invariants in low-dimensional topology that arise e.g. in Vafa-Witten theory and in non-perturbative completion of complex Chern-Simons theory. In particular, we introduce explicit numerical algorithms that efficiently implement this bijection. This bijection is founded on preservation of relations, a fundamental property of resurgent functions. Using resurgent analysis we find new structures and patterns in complex Chern-Simons theory on closed hyperbolic 3-manifolds obtained by surgeries on hyperbolic twist knots. The Borel plane exhibits several intriguing hints of a new form of integrability. An important role in this analysis is played by the twisted Alexander polynomials and the adjoint Reidemeister torsion, which help us determine the Stokes data. The method of singularity elimination enables extraction of geometric data even for very distant Borel singularities, leading to detailed non-perturbative information from perturbative data. We also introduce a new double-scaling limit to probe 0-surgeries from the limiting r → ∞ behavior of 1 r surgeries, and apply it to the family of hyperbolic twist knots.more » « less
-
Many well studied knots can be realized as positive braid knots where the braid word contains a positive full twist; we say that such knots are twist positive. Some important families of knots are twist positive, including torus knots, 1-bridge braids, algebraic knots, and Lorenz knots. We prove that if a knot is twist positive, the braid index appears as the third exponent in its Alexander polynomial. We provide a few applications of this result. After observing that most known examples of L-space knots are twist positive, we prove: if K is a twist positive L-space knot, the braid index and bridge index of K agree. This allows us to provide evidence for Baker’s reinterpretation of the slice-ribbon conjecture: that every smooth concordance class contains at most one fibered, strongly quasipositive knot. In particular, we provide the first example of an infinite family of positive braid knots which are distinct in concordance, and where, as g tends to infinity, the number of hyperbolic knots of genus g gets arbitrarily large. Finally, we collect some evidence for a few new conjectures, including the following: the braid and bridge indices agree for any L-space knot.more » « less
-
Abstract We unify two existing approaches to thetauinvariants in instanton and monopole Floer theories, by identifying , defined by the second author via theminusflavors and of the knot homologies, with , defined by Baldwin and Sivek via cobordism maps of the 3‐manifold homologies induced by knot surgeries. We exhibit several consequences, including a relationship with Heegaard Floer theory, and use our result to compute and for twist knots.more » « less
An official website of the United States government

