Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dynamic shear modulus plays an important role in the seismic assessment of geotechnical systems. Changes in the degree of water saturation influence dynamic soil properties because of the presence of matric suction. This paper describes the modification of a suction-controlled cyclic triaxial apparatus to investigate the strain-dependent shear modulus of unsaturated soils. Several strain- and stress-controlled cyclic triaxial tests were performed on a clean sand with various degrees of saturation. Suction in unsaturated sands increased the shear modulus in comparison with the ones in dry and saturated conditions for different shear strain levels, with a peak modulus in higher suction levels. Also, shear modulus decreased with an increase in the shear strain for specimens with similar matric suction. The normalized shear moduli of the unsaturated sand specimens followed a similar trend to the ones predicted by the available empirical shear modulus reduction functions but showed lower values. The modulus reduction ratios of unsaturated sands shifted up as a result of higher effective stress and suction-induced stiffness. These trends were consistent for both strain- and stress-controlled tests.more » « less
-
The dynamic properties of a clean sand under different degrees of saturation is investigated using a modified custom built Direct Simple Shear (DSS) apparatus at the University of New Hampshire. The specific characteristics of the DSS are presented and the testing procedures are discussed. The device utilizes the axis translation and tensiometric techniques to control the matric suction in the soil specimen. The investigation on F75 Ottawa Sand shows a decrease in shear modulus and an increase in damping by increasing the shear strain over the tested range of strains for various degrees of saturation; dry, saturated, and partially saturated. The modulus reduction in the applied range of medium shear strains regardless of the degree of saturation demonstrates the capability of the DSS in consistently capturing the changes of dynamic properties. Experimental results indicate that the matric suction can have a substantial effect on the stiffness of the soil. However, the extent of this effect may depend on the induced strain level the effective stress in unsaturated soil. In addition, partially saturated specimens resulted in lower dynamic compression.more » « less
-
Seismic response of unsaturated soil layers may differ from that of saturated or dry soil deposits. A set of centrifuge experiments was conducted to study the influence of partial saturation on seismic response of sand layers under scaled Northridge earthquake motion. Steady state infiltration was implemented to control and provide uniform degrees of saturation profiles in depth. The amplification of peak ground acceleration at the soil surface was inversely proportional to the degree of saturation, especially in low period range. The cumulative intensity amplification of the motion was also higher in unsaturated soils with higher suctions. The lateral deformation and surface settlement of partially saturated sand with higher stiffness were generally lower than that in dry soil. Although neglecting the effect of partial saturation in sand layers might be conservative with respect to seismic deformations, it may result in underestimating the surface design spectra.more » « less
An official website of the United States government
