skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1343381

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mobile Virtual Network Operators (MVNOs) are an increasingly growing segment of the market for wireless services. MVNOs do not own their own network infrastructure and so must cooperate with existing Mobile Network Operators (MNOs) to gain access to the network infrastructure needed to enter this market. Cooperating with an MVNO is a non-trivial decision for an MNO in part because the MVNO may then become a potential competitor for customers. One motive for entering into such an arrangement is that the MVNO receives an added value from serving customers beyond what it earns from charging them for wireless service. We study a game theoretic model for the cooperation and competition between an MNO and such an added value MVNO based on models for price competition with congestible resources. Our model captures two different dimensions of how an MNO may cooperate. The first dimension is the payment scheme between the MNO and the MVNO. The second dimension is the access priority that the MNO chooses to offer to the MVNO's customers. We characterize the pros and cons of different cooperation modes and analyze the optimal cooperation mode under different conditions. 
    more » « less
  2. Adding new unlicensed wireless spectrum is a promising approach to accommodate increasing traffic demand. However, unlicensed spectrum may have a high risk of becoming congested, and service providers (SPs) may have difficulty to differentiate their wireless services when offering them on the same unlicensed spectrum. When SPs offer identical services, the resulting competition can lead to zero profits. In this work, we consider the case where an SP bundles its wireless service with a content service. We show that this can differentiate the SPs’ services and lead to positive SP profits. In particular, we study the characteristics of the content services that an SP should bundle with its wireless service, and analyze the impact of bundling on consumer surplus. 
    more » « less
  3. Conventionally, mobile network operators charge users for data plan subscriptions. To create new revenue streams, some operators now also incentivize users to watch ads with data rewards and collect payments from advertisers. In this work, we study two such rewarding schemes: a Subscription-Aware Rewarding (SAR) scheme and a Subscription-Unaware Rewarding (SUR) scheme. Under the SAR scheme, only the subscribers of the operators' existing data plans are eligible for the rewards; under the SUR scheme, all users are eligible for the rewards (e.g., the users who do not subscribe to the data plans can still get SIM cards and receive data rewards by watching ads). We model the interactions among a capacity-constrained operator, users, and advertisers by a two-stage Stackelberg game, and characterize their equilibrium strategies under both the SAR and SUR schemes. We show that the SAR scheme can lead to more subscriptions and a higher operator revenue from the data market, while the SUR scheme can lead to better ad viewership and a higher operator revenue from the ad market. We provide some counter-intuitive insights for the design of data rewards. For example, the operator's optimal choice between the two schemes is sensitive to the users' data consumption utility function. When each user has a logarithmic utility function, the operator should apply the SUR scheme (i.e., reward both subscribers and nonsubscribers) if and only if it has a small network capacity. 
    more » « less