We analyze the prioritized sharing between an added value Mobile Virtual Network Operator (MVNO) and multiple Mobile Network Operators (MNOs). An added value MVNO is one which earns added revenue from wireless users in addition to the revenue it directly collects for providing them wireless service. To offer service, an MVNO needs to contract with one or more MNOs to utilize their networks. Agreeing on such a contract requires the MNOs to consider the impact on their revenue from allowing the MVNO to enter the market as well as the possibility that other MNOs will cooperate. To further protect their customers, the MNOs may prioritize their direct customers over those of the MVNO. We establish a multi-stage game to analyze the equilibrium decisions of the MVNO, MNOs, and users in such a setting. In particular, we characterize the condition under which the MVNO can collaborate with the MNOs. The results show that the MVNO tends to cooperate with the MNOs when the band resources are limited and the added value is significant. When there is significant difference in band resources among the MNOs, the MVNO first considers cooperating with the MNO with a smaller band. We also consider the case when the users also have access to unlicensed spectrum.
more »
« less
The Cooperation and Competition Between an Added Value MVNO and an MNO Allowing Secondary Access
Mobile Virtual Network Operators (MVNOs) are an increasingly growing segment of the market for wireless services. MVNOs do not own their own network infrastructure and so must cooperate with existing Mobile Network Operators (MNOs) to gain access to the network infrastructure needed to enter this market. Cooperating with an MVNO is a non-trivial decision for an MNO in part because the MVNO may then become a potential competitor for customers. One motive for entering into such an arrangement is that the MVNO receives an added value from serving customers beyond what it earns from charging them for wireless service. We study a game theoretic model for the cooperation and competition between an MNO and such an added value MVNO based on models for price competition with congestible resources. Our model captures two different dimensions of how an MNO may cooperate. The first dimension is the payment scheme between the MNO and the MVNO. The second dimension is the access priority that the MNO chooses to offer to the MVNO's customers. We characterize the pros and cons of different cooperation modes and analyze the optimal cooperation mode under different conditions.
more »
« less
- PAR ID:
- 10178816
- Date Published:
- Journal Name:
- 2019 International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT)
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper proposes a novel cognitive cooperative transmission scheme by exploiting massive multiple-input multiple-output (MMIMO) and non-orthogonal multiple access (NOMA) radio technologies, which enables a macrocell network and multiple cognitive small cells to cooperate in dynamic spectrum sharing. The macrocell network is assumed to own the spectrum band and be the primary network (PN), and the small cells act as the secondary networks (SNs). The secondary access points (SAPs) of the small cells can cooperatively relay the traffic for the primary users (PUs) in the macrocell network, while concurrently accessing the PUs’ spectrum to transmit their own data opportunistically through MMIMO and NOMA. Such cooperation creates a “win-win” situation: the throughput of PUs will be significantly increased with the help of SAP relays, and the SAPs are able to use the PU’s spectrum to serve their secondary users (SUs). The interplay of these advanced radio techniques is analyzed in a systematic manner, and a framework is proposed for the joint optimization of cooperative relay selection, NOMA and MMIMO transmit power allocation, and transmission scheduling. Further, to model network-wide cooperation and competition, a two-sided matching algorithm is designed to find the stable partnership between multiple SAPs and PUs. The evaluation results demonstrate that the proposed scheme achieves significant performance gains for both primary and secondary users, compared to the baselines.more » « less
-
While cloud computing is the current standard for outsourcing computation, it can be prohibitively expensive for cities and infrastructure operators to deploy services. At the same time, there are underutilized computing resources within cities and local edge-computing deployments. Using these slack resources may enable significantly lower pricing than comparable cloud computing; such resources would incur minimal marginal expenditure since their deployment and operation are mostly sunk costs. However, there are challenges associated with using these resources. First, they are not effectively aggregated or provisioned. Second, there is a lack of trust between customers and suppliers of computing resources, given that they are distinct stakeholders and behave according to their own interests. Third, delays in processing inputs may diminish the value of the applications. To resolve these challenges, we introduce an architecture combining a distributed trusted computing mechanism, such as a blockchain, with an efficient messaging system like Apache Pulsar. Using this architecture, we design a decentralized computation market where customers and suppliers make offers to deploy and host applications. The proposed architecture can be realized using any trusted computing mechanism that supports smart contracts, and any messaging framework with the necessary features. This combination ensures that the market is robust without incurring the input processing delays that limit other blockchain-based solutions. We evaluate the market protocol using game-theoretic analysis to show that deviation from the protocol is discouraged. Finally, we assess the performance of a prototype implementation based on experiments with a streaming computer-vision application.more » « less
-
Suweis, Samir (Ed.)Statistical network models have been used to study the competition among different products and how product attributes influence customer decisions. However, in existing research using network-based approaches, product competition has been viewed as binary (i.e., whether a relationship exists or not), while in reality, the competition strength may vary among products. In this paper, we model the strength of the product competition by employing a statistical network model, with an emphasis on how product attributes affect which products are considered together and which products are ultimately purchased by customers. We first demonstrate how customers’ considerations and choices can be aggregated as weighted networks. Then, we propose a weighted network modeling approach by extending the valued exponential random graph model to investigate the effects of product features and network structures on product competition relations. The approach that consists of model construction, interpretation, and validation is presented in a step-by-step procedure. Our findings suggest that the weighted network model outperforms commonly used binary network baselines in predicting product competition as well as market share. Also, traditionally when using binary network models to study product competitions and depending on the cutoff values chosen to binarize a network, the resulting estimated customer preferences can be inconsistent. Such inconsistency in interpreting customer preferences is a downside of binary network models but can be well addressed by the proposed weighted network model. Lastly, this paper is the first attempt to study customers’ purchase preferences (i.e., aggregated choice decisions) and car competition (i.e., customers’ co-consideration decisions) together using weighted directed networks.more » « less
-
null (Ed.)Wireless infrastructure is steadily evolving into wireless access for all humans and most devices, from 5G to Internet-of-Things. This widespread access creates the expectation of custom and adaptive services from the personal network to the backbone network. In addition, challenges of scale and interoperability exist across networks, applications and services, requiring an effective wireless network management infrastructure. For this reason Software-Defined Networks (SDN) have become an attractive research area for wireless and mobile systems. SDN can respond to sporadic topology issues such as dropped packets, message latency, and/or conflicting resource management, to improved collaboration between mobile access points, reduced interference and increased security options. Until recently, the main focus on wireless SDN has been a more centralized approach, which has issues with scalability, fault tolerance, and security. In this work, we propose a state of the art WAM-SDN system for large-scale network management. We discuss requirements for large scale wireless distributed WAM-SDN and provide preliminary benchmarking and performance analysis based on our hybrid distributed and decentralized architecture. Keywords: software defined networks, controller optimization, resilience.more » « less
An official website of the United States government

