Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            null (Ed.)We present structural, magnetic, and optical properties of hexagonal HoFeO3/Al2O3 thin films deposited by Magnetron Sputtering. The x-ray diffraction patterns of HoFeO3 thin films show the c-planes of a hexagonal structure. The magnetization data display an antiferromagnetic transition temperature, TN∼120 ± 5 K and the magnetization-field hysteresis loops were measured below 100 K, confirming a weak ferromagnetism arising from a spin canting of the Fe3+ moments. The magnetization data also show an anomaly around ∼40 K due to a spin-reorientation transition caused by the Ho3+- Fe3+ interactions. We observed comparable magnetization along the ab plane and c axis although the spin canting of Fe3+ sites has a preferential component along the c axis, suggesting that the Ho3+- Fe3+ interactions dominate in the low temperature magnetic structures of hexagonal-HoFeO3. The observed electronic excitations at ∼2.29, 2.87, 3.82, 4.79, and 6.53 eV have been assigned to the Fe3+ d to d on-site as well as O 2p to Fe 3d, Ho 6s, and 5d charge-transfer excitations, respectively. The room temperature energy band gap of the hexagonal-HoFeO3 thin film was measured to be ∼1.99 ± 0.04 eV.more » « less
- 
            We present structural, magnetic, and optical properties of multiferroic hexagonal YbFeO3 thin films, deposited on single crystal (001) Al2O3 and (111) ysz substrates by a magnetron sputtering system. Interestingly, the thermal stress affects YbFeO3 films on Al2O3 and ysz very differently. Although hexagonal-YbFeO3/Al2O3 films changed from a hexagonal to an orthorhombic phase due to annealing above 1000 °C, hexagonal-YbFeO3/ysz films remained mostly unaffected even after annealing at 1200 °C. The electronic excitations of the YbFeO3 thin films are dominated by Fe3+ d to d on-site electronic excitations as well as O 2p to Fe 3d, Yb 6s, and 5d charge-transfer excitations, and these excitations for hexagonal-YbFeO3 and orthorhombic-YbFeO3 thin films are distinctly different, consistent with the crystal field environments in the hexagonal and orthorhombic phases of YbFeO3. The room temperature energy band gaps of the hexagonal-YbFeO3 and orthorhombic-YbFeO3 thin films were measured to be ∼1.95 ± 0.05 eV and ∼2.40 ± 0.05 eV, respectively.more » « less
- 
            This chapter presents structural, optical, and magnetic properties of multiferroic LuFeO3 thin films, deposited on single crystal sapphire and YSZ substrates by an RF magnetron sputtering system. Growth temperature and annealing are found to be critical to stabilize hexagonal LuFeO3 thin films. Radio‐Frequency (RF) Magnetron Sputtering is relatively cost effective and one of the most commonly used methods for the deposition of oxides. An RF Magnetron Sputtering offers flexibility in terms of controlling the growth conditions, maintaining the stoichiometry, and a higher deposition rate. When the lattice strain is released due to annealing, the thin film can form bigger granular structures, as observed in the AFM image, by the nucleation process. The inset shows an example of the energy band edge fitting with the direct energy band gap model.more » « less
- 
            We report structural, optical, and electro-optical properties of polycrystalline YFe2O4 thin films, deposited on (0001) sapphire substrates using the electron-beam deposition technique. The optical spectra of a 120 nm YFe2O4 show Fe d to d on-site and O 2p to Fe 3d, Y 4d, and Y 5s charge-transfer electronic excitations. Anomalies in the temperature dependence data of the charge-transfer excitations and the splitting of the 4.46 eV charge-transfer peak strongly suggest a structural distortion at 180 ± 10 K. Evidence of such a structural distortion is also manifested in the surface resistance versus temperature data. In addition, the YFe2O4 thin film at low temperatures shows strong electro-optical properties, as high as 9% in the energy range of 1 - 2.5 eV, for applied electric fields up to 500 V.cm−1.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available