skip to main content


Search for: All records

Award ID contains: 1445246

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Trees, the most successful biological power plants on earth, build and plumb the critical zone (CZ) in ways that we do not yet understand. To encourage exploration of the character and implications of interactions between trees and soil in the CZ, we propose nine hypotheses that can be tested at diverse settings. The hypotheses are roughly divided into those about the architecture (building) and those about the water (plumbing) in the CZ, but the two functions are intertwined. Depending upon one's disciplinary background, many of the nine hypotheses listed below may appear obviously true or obviously false. (1) Tree roots can only physically penetrate and biogeochemically comminute the immobile substrate underlying mobile soil where that underlying substrate is fractured or pre-weathered. (2) In settings where the thickness of weathered material, H, is large, trees primarily shape the CZ through biogeochemical reactions within the rooting zone. (3) In forested uplands, the thickness of mobile soil, h, can evolve toward a steady state because of feedbacks related to root disruption and tree throw. (4) In settings where hH and the rates of uplift and erosion are low, the uptake of phosphorus into trees is buffered by the fine-grained fraction of the soil, and the ultimate source of this phosphorus is dust. (5) In settings of limited water availability, trees maintain the highest length density of functional roots at depths where water can be extracted over most of the growing season with the least amount of energy expenditure. (6) Trees grow the majority of their roots in the zone where the most growth-limiting resource is abundant, but they also grow roots at other depths to forage for other resources and to hydraulically redistribute those resources to depths where they can be taken up more efficiently. (7) Trees rely on matrix water in the unsaturated zone that at times may have an isotopic composition distinct from the gravity-drained water that transits from the hillslope to groundwater and streamflow. (8) Mycorrhizal fungi can use matrix water directly, but trees can only use this water by accessing it indirectly through the fungi. (9) Even trees growing well above the valley floor of a catchment can directly affect stream chemistry where changes in permeability near the rooting zone promote intermittent zones of water saturation and downslope flow of water to the stream. By testing these nine hypotheses, we will generate important new cross-disciplinary insights that advance CZ science.

     
    more » « less
  2. Abstract. The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth's materials are unweathered. The network of nine CZ observatories supported by the US National Science Foundation has made advances in three broad areas of CZ research relating to the co-evolving surfaces. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response, in turn, impacts aboveground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences aboveground ecosystems. Third, several new mechanistic models now provide quantitative predictions of the spatial structure of the subsurface of the CZ.
    Many countries fund critical zone observatories (CZOs) to measure the fluxes of solutes, water, energy, gases, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each US observatory has succeeded in (i) synthesizing research across disciplines into convergent approaches; (ii) providing long-term measurements to compare across sites; (iii) testing and developing models; (iv) collecting and measuring baseline data for comparison to catastrophic events; (v) stimulating new process-based hypotheses; (vi) catalyzing development of new techniques and instrumentation; (vii) informing the public about the CZ; (viii) mentoring students and teaching about emerging multidisciplinary CZ science; and (ix) discovering new insights about the CZ. Many of these activities can only be accomplished with observatories. Here we review the CZO enterprise in the United States and identify how such observatories could operate in the future as a network designed to generate critical scientific insights. Specifically, we recognize the need for the network to study network-level questions, expand the environments under investigation, accommodate both hypothesis testing and monitoring, and involve more stakeholders. We propose a driving question for future CZ science and a hubs-and-campaigns model to address that question and target the CZ as one unit. Only with such integrative efforts will we learn to steward the life-sustaining critical zone now and into the future.

     
    more » « less
  3. December CZ Science International Workshop; San Francisco, California, 13–14 December 2014 
    more » « less