skip to main content


Title: Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth

Abstract. The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth's materials are unweathered. The network of nine CZ observatories supported by the US National Science Foundation has made advances in three broad areas of CZ research relating to the co-evolving surfaces. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response, in turn, impacts aboveground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences aboveground ecosystems. Third, several new mechanistic models now provide quantitative predictions of the spatial structure of the subsurface of the CZ.
Many countries fund critical zone observatories (CZOs) to measure the fluxes of solutes, water, energy, gases, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each US observatory has succeeded in (i) synthesizing research across disciplines into convergent approaches; (ii) providing long-term measurements to compare across sites; (iii) testing and developing models; (iv) collecting and measuring baseline data for comparison to catastrophic events; (v) stimulating new process-based hypotheses; (vi) catalyzing development of new techniques and instrumentation; (vii) informing the public about the CZ; (viii) mentoring students and teaching about emerging multidisciplinary CZ science; and (ix) discovering new insights about the CZ. Many of these activities can only be accomplished with observatories. Here we review the CZO enterprise in the United States and identify how such observatories could operate in the future as a network designed to generate critical scientific insights. Specifically, we recognize the need for the network to study network-level questions, expand the environments under investigation, accommodate both hypothesis testing and monitoring, and involve more stakeholders. We propose a driving question for future CZ science and a hubs-and-campaigns model to address that question and target the CZ as one unit. Only with such integrative efforts will we learn to steward the life-sustaining critical zone now and into the future.

 
more » « less
Award ID(s):
1331726 1445246 1331940
NSF-PAR ID:
10098611
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Earth Surface Dynamics
Volume:
5
Issue:
4
ISSN:
2196-632X
Page Range / eLocation ID:
841 to 860
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetation canopy through the soil and down to fresh bedrock and the bottom of groundwater. All humans live in and depend on the critical zone. This zone has three co-evolving surfaces: the top of the vegetation canopy, the ground surface, and a deep subsurface below which Earth’s materials are unweathered. The US National Science Foundation supported network of nine critical zone observatories has made advances in three broad critical zone research areas. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response in turn impacts above-ground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences above-ground ecosystems. Third, several mechanistic models providing quantitative predictions of the spatial structure of the subsurface of the CZ have been proposed.

    Many countries now fund networks of critical zone observatories (CZOs) to measure the fluxes of solutes, water, energy, gas, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each U.S. observatory has succeeded in synthesizing observations across disciplines; providing long-term measurements to compare across sites; testing and developing models; collecting and measuring baseline data for comparison to catastrophic events; stimulating new process-based hypotheses; catalyzing development of new techniques and instrumentation; informing the public about the CZ; mentoring students and teaching about emerging multi-disciplinary CZ science; and discovering new insights about the CZ. Many of these activities can only be accomplished with observatories. Here we review the CZO experiment in the US and identify how such a network could evolve in the future. Specifically, we recognize the need for the network to study network-level questions, expand the environments under investigation, accommodate both hypothesis testing and monitoring, and involve more stakeholders. We propose a hubs-and-campaigns model that promotes study of the CZ as one unit. Only with such integrative efforts will we learn to steward the life-sustaining critical zone now and into the future. 
    more » « less
  2. Abstract. Many scientists have begun to refer to the earth surface environment from the upper canopy to the depths of bedrock as the critical zone (CZ). Identification of the CZ as an integral object worthy of study implicitly posits that the study of the whole earth surface will provide benefits that do not arise when studying the individual parts. To study the CZ, however, requires prioritizing among the measurements that can be made – and we do not generally agree on the priorities. Currently, the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) is expanding from a small original focus area (0.08km2, Shale Hills catchment), to a larger watershed (164km2, Shavers Creek watershed) and is grappling with the prioritization. This effort is an expansion from a monolithologic first-order forested catchment to a watershed that encompasses several lithologies (shale, sandstone, limestone) and land use types (forest, agriculture). The goal of the project remains the same: to understand water, energy, gas, solute, and sediment (WEGSS) fluxes that are occurring today in the context of the record of those fluxes over geologic time as recorded in soil profiles, the sedimentary record, and landscape morphology.

    Given the small size of the Shale Hills catchment, the original design incorporated measurement of as many parameters as possible at high temporal and spatial density. In the larger Shavers Creek watershed, however, we must focus the measurements. We describe a strategy of data collection and modeling based on a geomorphological and land use framework that builds on the hillslope as the basic unit. Interpolation and extrapolation beyond specific sites relies on geophysical surveying, remote sensing, geomorphic analysis, the study of natural integrators such as streams, groundwaters or air, and application of a suite of CZ models. We hypothesize that measurements of a few important variables at strategic locations within a geomorphological framework will allow development of predictive models of CZ behavior. In turn, the measurements and models will reveal how the larger watershed will respond to perturbations both now and into the future.

     
    more » « less
  3. Abstract

    Water in rivers is delivered via the critical zone (CZ)—the living skin of the Earth, extending from the top of the vegetation canopy through the soil and down to fresh bedrock and the bottom of significantly active groundwater. Consequently, the success of stream‐rearing salmonids depends on the structure and resulting water storage and release processes of this zone. Physical processes below the land surface (the subsurface component of the CZ) ultimately determine how landscapes “filter” climate to manifest ecologically significant streamflow and temperature regimes. Subsurface water storage capacity of the CZ has emerged as a key hydrologic variable that integrates many of these subsurface processes, helping to explain flow regimes and terrestrial plant community composition. Here, we investigate how subsurface storage controls flow, temperature, and energetic regimes that matter for salmonids. We illustrate the explanatory power of broadly applicable, storage‐based frameworks across a lithological gradient that spans the Eel River watershed of California. Study sites are climatically similar but differ in their geologies and consequent subsurface CZ structure that dictates water storage dynamics, leading to dramatically different hydrographs, temperature, and riparian regimes—with consequences for every aspect of salmonid life history. Lithological controls on the development of key subsurface CZ properties like storage capacity suggest a heretofore unexplored link between salmonids and geology, adding to a rich literature that highlights various fluvial and geomorphic influences on salmonid diversity and distribution. Rapidly advancing methods for estimating and observing subsurface water storage dynamics at large scales present new opportunities for more clearly identifying landscape features that constrain the distributions and abundances of organisms, including salmonids, at watershed scales.

     
    more » « less
  4. Summary

    The emergence of critical zone (CZ) science has provided an integrative platform for investigating plant ecophysiology in the context of landscape evolution, weathering and hydrology. The CZ lies between the top of the vegetation canopy and fresh, chemically unaltered bedrock and plays a pivotal role in sustaining life. We consider what the CZ perspective has recently brought to the study of plant ecophysiology. We specifically highlight novel research demonstrating the importance of the deeper subsurface for plant water and nutrient relations. We also point to knowledge gaps and research opportunities, emphasising, in particular, greater focus on the roles of deep, nonsoil resources and how those resources influence and coevolve with plants as a frontier of plant ecophysiological research.

     
    more » « less
  5. Abstract

    How subsurface microbial life changed at the bottom of the kilometers‐deep (hypo) Critical Zone in response to evolving surface conditions over geologic time is an open question. This study investigates the burial and exhumation, biodegradation, and fluid circulation history of hydrocarbon reservoirs across the Colorado Plateau as a window into the hypo‐Critical Zone. Hydrocarbon reservoirs, in the Paradox and Uinta basins, were deeply buried starting ca. 100 to 60 Ma, reaching temperatures >80–140°C, likely sterilizing microbial communities present since the deposition of sediments. High salinities associated with evaporites may have further limited microbial activity. Upward migration of hydrocarbons from shale source rocks into shallower reservoirs during maximum burial set the stage for microbial re‐introduction by creating organic‐rich “hot spots.” Denudation related to the incision of the Colorado River over the past few million years brought reservoirs closer to the surface under cooler temperatures, enhanced deep meteoric water circulation and flushing of saline fluids, and likely re‐inoculated more permeable sediments up to several km depth. Modern‐ to paleo‐hydrocarbon reservoirs show molecular and isotopic evidence of anaerobic oxidation of hydrocarbons coupled to bacterial sulfate reduction in areas with relatively high SO4‐fluxes. Anaerobic oil biodegradation rates are high enough to explain the removal of at least some portion of postulated “supergiant oil fields” across the Colorado Plateau by microbial activity over the past several million years. Results from this study help constrain the lower limits of the hypo‐Critical Zone and how it evolved over geologic time, in response to changing geologic, hydrologic, and biologic forcings.

     
    more » « less