Abstract. Many scientists have begun to refer to the earth surface environment from the upper canopy to the depths of bedrock as the critical zone (CZ). Identification of the CZ as an integral object worthy of study implicitly posits that the study of the whole earth surface will provide benefits that do not arise when studying the individual parts. To study the CZ, however, requires prioritizing among the measurements that can be made – and we do not generally agree on the priorities. Currently, the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) is expanding from a small original focus area (0.08km2, Shale Hills catchment), to a larger watershed (164km2, Shavers Creek watershed) and is grappling with the prioritization. This effort is an expansion from a monolithologic first-order forested catchment to a watershed that encompasses several lithologies (shale, sandstone, limestone) and land use types (forest, agriculture). The goal of the project remains the same: to understand water, energy, gas, solute, and sediment (WEGSS) fluxes that are occurring today in the context of the record of those fluxes over geologic time as recorded in soil profiles, the sedimentary record, and landscape morphology. Given the small size of the Shale Hills catchment, the original design incorporated measurement of as many parameters as possible at high temporal and spatial density. In the larger Shavers Creek watershed, however, we must focus the measurements. We describe a strategy of data collection and modeling based on a geomorphological and land use framework that builds on the hillslope as the basic unit. Interpolation and extrapolation beyond specific sites relies on geophysical surveying, remote sensing, geomorphic analysis, the study of natural integrators such as streams, groundwaters or air, and application of a suite of CZ models. We hypothesize that measurements of a few important variables at strategic locations within a geomorphological framework will allow development of predictive models of CZ behavior. In turn, the measurements and models will reveal how the larger watershed will respond to perturbations both now and into the future.
more »
« less
Reviews and syntheses: on the roles trees play in building and plumbing the critical zone
Abstract. Trees, the most successful biological power plants on earth, build and plumb the critical zone (CZ) in ways that we do not yet understand. To encourage exploration of the character and implications of interactions between trees and soil in the CZ, we propose nine hypotheses that can be tested at diverse settings. The hypotheses are roughly divided into those about the architecture (building) and those about the water (plumbing) in the CZ, but the two functions are intertwined. Depending upon one's disciplinary background, many of the nine hypotheses listed below may appear obviously true or obviously false. (1) Tree roots can only physically penetrate and biogeochemically comminute the immobile substrate underlying mobile soil where that underlying substrate is fractured or pre-weathered. (2) In settings where the thickness of weathered material, H, is large, trees primarily shape the CZ through biogeochemical reactions within the rooting zone. (3) In forested uplands, the thickness of mobile soil, h, can evolve toward a steady state because of feedbacks related to root disruption and tree throw. (4) In settings where h≪H and the rates of uplift and erosion are low, the uptake of phosphorus into trees is buffered by the fine-grained fraction of the soil, and the ultimate source of this phosphorus is dust. (5) In settings of limited water availability, trees maintain the highest length density of functional roots at depths where water can be extracted over most of the growing season with the least amount of energy expenditure. (6) Trees grow the majority of their roots in the zone where the most growth-limiting resource is abundant, but they also grow roots at other depths to forage for other resources and to hydraulically redistribute those resources to depths where they can be taken up more efficiently. (7) Trees rely on matrix water in the unsaturated zone that at times may have an isotopic composition distinct from the gravity-drained water that transits from the hillslope to groundwater and streamflow. (8) Mycorrhizal fungi can use matrix water directly, but trees can only use this water by accessing it indirectly through the fungi. (9) Even trees growing well above the valley floor of a catchment can directly affect stream chemistry where changes in permeability near the rooting zone promote intermittent zones of water saturation and downslope flow of water to the stream. By testing these nine hypotheses, we will generate important new cross-disciplinary insights that advance CZ science.
more »
« less
- PAR ID:
- 10098610
- Date Published:
- Journal Name:
- Biogeosciences
- Volume:
- 14
- Issue:
- 22
- ISSN:
- 1726-4189
- Page Range / eLocation ID:
- 5115 to 5142
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetation canopy through the soil and down to fresh bedrock and the bottom of groundwater. All humans live in and depend on the critical zone. This zone has three co-evolving surfaces: the top of the vegetation canopy, the ground surface, and a deep subsurface below which Earth’s materials are unweathered. The US National Science Foundation supported network of nine critical zone observatories has made advances in three broad critical zone research areas. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response in turn impacts above-ground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences above-ground ecosystems. Third, several mechanistic models providing quantitative predictions of the spatial structure of the subsurface of the CZ have been proposed. Many countries now fund networks of critical zone observatories (CZOs) to measure the fluxes of solutes, water, energy, gas, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each U.S. observatory has succeeded in synthesizing observations across disciplines; providing long-term measurements to compare across sites; testing and developing models; collecting and measuring baseline data for comparison to catastrophic events; stimulating new process-based hypotheses; catalyzing development of new techniques and instrumentation; informing the public about the CZ; mentoring students and teaching about emerging multi-disciplinary CZ science; and discovering new insights about the CZ. Many of these activities can only be accomplished with observatories. Here we review the CZO experiment in the US and identify how such a network could evolve in the future. Specifically, we recognize the need for the network to study network-level questions, expand the environments under investigation, accommodate both hypothesis testing and monitoring, and involve more stakeholders. We propose a hubs-and-campaigns model that promotes study of the CZ as one unit. Only with such integrative efforts will we learn to steward the life-sustaining critical zone now and into the future.more » « less
-
Physical, chemical, and biological processes create and maintain the critical zone (CZ). In weathered and crystalline rocks, these processes occur over 10–100 s of meters and transform bedrock into soil. The CZ provides pore space and flow paths for groundwater, supplies nutrients for ecosystems, and provides the foundation for life. Vegetation in the aboveground CZ depends on these components and actively mediates Earth system processes like evapotranspiration, nutrient and water cycling, and hill slope erosion. Therefore, the vertical and lateral extent of the CZ can provide insight into the important chemical and physical processes that link life on the surface with geology 10–100 s meters below. In this study, we present 3.9 km of seismic refraction data in a weathered and crystalline granite in the Laramie Range, Wyoming. The refraction data were collected to investigate two ridges with clear contrasts in vegetation and slope. Given the large contrasts in slope, aspect, and vegetation cover, we expected large differences in CZ structure. However, our results suggest no significant differences in large-scale (>10 s of m) CZ structure as a function of slope or aspect. Our data appears to suggest a relationship between LiDAR-derived canopy height and depth to fractured bedrock where the tallest trees are located over regions with the shallowest depth to fractured bedrock. After separating our data by the presence or lack of vegetation, higher P-wave velocities under vegetation is likely a result of higher saturation.more » « less
-
Aspect influences critical zone (CZ) function, particularly in mountainous terrain where it is an ecosystem-defining geographical feature. Distinct insolation across aspects is linked to differences in water availability and flows, land cover and vegetation productivity, soil thickness and rooting depths, frost cracking, weathering rates, and solute concentrations. Relatively few studies have explored any changing influence of aspect on vegetation productivity, which governs soil water storage and runoff. We probe the hypothesis that the productivity benefit of growing on aspects with greater radiation inputs in mountain systems has been declining over the past few decades as warming has accelerated. We quantify how forest productivity varies with aspect from 1985 to 2021 across the world’s mountain ranges using a monthly-averaged, satellite-derived measure of greenness (NDVI). Globally, most montane forests exhibited increasing greenness over time. Mountainous forests ~15° to ~40° latitude N or S of the equator exhibited behavior consistent with our hypothesis by increasingly favoring shadier aspects, particularly during growing seasons when rainfall and soil moisture can be limiting to productivity. In contrast, closer to the poles where climates are coolest and aspect has an even greater influence on annual solar radiation, the benefit of a sun-facing aspect appears to be increasing across all seasons, consistent with poleward forest community migration hypotheses. We also demonstrate greater increases over time in montane forest greenness on east-facing slopes compared to west-facing slopes; north of ~40° latitude this pattern appears less robust. These observations reveal that it is increasingly disadvantageous for montane forests growing on sunnier, hotter aspects at relatively low latitudes during the hottest times of the year. Given known linkages between ecosystem productivity and CZ functions like water storage, provision, and flows, soil development, solute production, and regolith thickness, these analyses cast light on yet-underappreciated consequences of a rapidly warming climate on Earth’s montane forests and their capacity to shape CZ processes.more » « less
-
Abstract. Heterotrophic prokaryotic production (BP) was studied in the western tropical South Pacific (WTSP) using the leucine technique, revealing spatial and temporal variability within the region. Integrated over the euphotic zone, BP ranged from 58 to 120mg Cm−2d−1 within the Melanesian Archipelago, and from 31 to 50mg Cm−2d−1 within the western subtropical gyre. The collapse of a bloom was followed during 6 days in the south of Vanuatu using a Lagrangian sampling strategy. During this period, rapid evolution was observed in the three main parameters influencing the metabolic state: BP, primary production (PP) and bacterial growth efficiency. With N2 fixation being one of the most important fluxes fueling new production, we explored relationships between BP, PP and N2 fixation rates over the WTSP. The contribution of N2 fixation rates to bacterial nitrogen demand ranged from 3 to 81%. BP variability was better explained by the variability of N2 fixation rates than by that of PP in surface waters of the Melanesian Archipelago, which were characterized by N-depleted layers and low DIP turnover times (TDIP<100h). This is consistent with the fact that nitrogen was often one of the main factors controlling BP on short timescales, as shown using enrichment experiments, followed by dissolved inorganic phosphate (DIP) near the surface and labile organic carbon deeper in the euphotic zone. However, BP was more significantly correlated with PP, but not with N2 fixation rates where DIP was more available (TDIP>100h), deeper in the Melanesian Archipelago, or within the entire euphotic zone in the subtropical gyre. The bacterial carbon demand to gross primary production ratio ranged from 0.75 to 3.1. These values are discussed in the framework of various assumptions and conversion factors used to estimate this ratio, including the methodological errors, the daily variability of BP, the bacterial growth efficiency and one bias so far not considered: the ability for Prochlorococcus to assimilate leucine in the dark.more » « less
An official website of the United States government

