skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stability of epitaxial BiXO3 phases by density-functional theory
The bismuth-based perovskites are an interesting class of materials that exhibit a variety of coupled ferroic properties. Through epitaxial growth in the (001) pseudo-cubic [(001)pc] orientation, various phases with variable ferroelectric polarization can be stabilized. Using density-functional theory calculations, we predict the phase stability of the bismuth-based perovskite oxides as a function of pseudo-cubic in-plane (IP) lattice constant, mimicking (001)pc epitaxial films. We find that the BiMnO3, BiCoO3, and BiNiO3 systems each exhibit only one stable phase over a wide range of IP lattice constants. In the BiFeO3 (BFO) and BiCrO3 (BCO) systems, by comparison, we find several phases that are energetically favorable, depending on the value of the IP strain. The BFO phases predicted to be stable, in order of increasing compressive IP strain, are monoclinic Cc, triclinic P1, monoclinic Cm, and tetragonal P4mm. In the BCO system, we find two orthorhombic Pbnm phases, respectively, under no IP strain and under compressive IP strain, and one monoclinic Cc phase to be stable under tensile IP strain. Our results serve to guide experimental efforts in terms of selecting growth substrates with the goal of achieving desired epitaxial-stabilized perovskite phases and to support future investigations of the tunability of BXO properties with epitaxial strain.  more » « less
Award ID(s):
1534503
PAR ID:
10594946
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
8
Issue:
8
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Perovskite oxide heterostructures host a large number of interesting phenomena such as ferroelectricity, which are often driven by octahedral distortions in the crystal that may induce polarization. SrHfO3 (SHO) is a perovskite oxide with a pseudocubic lattice parameter of 4.08 Å that previous density functional theory (DFT) calculations suggest can be stabilized in a ferroelectric P4mm phase when stabilized with sufficient compressive strain. Additionally, it is insulating and possesses a large band gap and a high dielectric constant, making it an ideal candidate for oxide electronic devices. To test the viability of epitaxial strain as a driver of ferroic phase transitions, SHO films were grown by hybrid molecular beam epitaxy (hMBE) with a tetrakis(ethylmethylamino)hafnium(IV) source on GdScO3 and TbScO3 substrates. Strained SHO phases were characterized using X-ray diffraction, X-ray absorption spectroscopy, and scanning transmission electron microscopy to determine the space group of the strained films, with the results compared to those of DFT-optimized models of phase stability versus strain. Contrary to past reports, we find that compressively strained SrHfO3 undergoes octahedral tilt distortions without associated ferroelectric polarization and most likely takes on the I4/mcm phase with the a0a0c– tilt pattern. 
    more » « less
  2. null (Ed.)
    Epitaxial films of vanadium dioxide (VO 2 ) on rutile TiO 2 substrates provide a means of strain-engineering the transition pathways and stabilizing of the intermediate phases between monoclinic (insulating) M1 and rutile (metal) R end phases. In this work, we investigate structural behavior of epitaxial VO 2 thin films deposited on isostructural MgF 2 (001) and (110) substrates via temperature-dependent Raman microscopy analysis. The choice of MgF 2 substrate clearly reveals how elongation of V–V dimers accompanied by the shortening of V–O bonds triggers the intermediate M2 phase in the temperature range between 70–80 °C upon the heating–cooling cycles. Consistent with earlier claims of strain-induced electron correlation enhancement destabilizing the M2 phase our temperature-dependent Raman study supports a small temperature window for this phase. The similarity of the hysteretic behavior of structural and electronic transitions suggests that the structural transitions play key roles in the switching properties of epitaxial VO 2 thin films. 
    more » « less
  3. PbTiO3-based ferroelectrics have impressive electroactive properties, originating from the Pb2+ 6s2 electron lone-pair, which cause large elastic distortion and electric polarization due to cooperative pseudo Jahn-Teller effect. Recently, tin-based perovskite oxide (SnTiO3) containing Sn2+ and a chemistry similar to that of the 6s2 lone-pair has been identified as a thermally stable, environmentally friendly substitute for PbTiO3-based ferroelectrics. However experimental attempts to stabilize Sn2+ on the A-site of perovskite ATiO3 have so far failed. In this work, we report on the growth of atomically smooth, epitaxial, and coherent Sn-alloyed SrTiO3 films on SrTiO3 (001) substrates using a hybrid molecular beam epitaxy approach. With increasing Sn concentration, the out-of-plane lattice parameter first increases in accordance with the Vegard’s law and then decreases for Sn(Sr+Ti+Sn) at. % ratio > 0.1 due to the incorporation of Sn2+ at the A-site. Using a combination of high-resolution X-ray photoelectron spectroscopy and density functional calculations, we show that while majority of Sn is on the B-site, there is a quantitatively unknown fraction of Sn being consistent with the A-site occupancy making SrTiO3 polar. A relaxor-like ferroelectric local distortion with monoclinic symmetry, induced by A-site Sn2+, was observed in Sn-doped SrTiO3 with Sn(Sr+Ti+Sn) at. % ratio = 0.1 using optical second harmonic generation measurements. The role of growth kinetics on the stability of Sn2+ in SrTiO3 is discussed. 
    more » « less
  4. Materials with metastable phases can exhibit vastly different properties from their thermodynamically favored counterparts. Methods to synthesize metastable phases without the need for high-temperature or high-pressure conditions would facilitate their widespread use. We report on the electrochemical growth of microcrystals of bismuth selenide, Bi2Se3, in the metastable orthorhombic phase at room temperature in aqueous solution. Rather than direct epitaxy with the growth substrate, the spontaneous formation of a seed layer containing nanocrystals of cubic BiSe enforces the metastable phase. We first used single-crystal silicon substrates with a range of resistivities and different orientations to identify the conditions needed to produce the metastable phase. When the applied potential during electrochemical growth is positive of the reduction potential of Bi3+, an initial, Bi-rich seed layer forms. Electron microscopy imaging and diffraction reveal that the seed layer consists of nanocrystals of cubic BiSe embedded within an amorphous matrix of Bi and Se. Using density functional theory calculations, we show that epitaxial matching between cubic BiSe and orthorhombic Bi2Se3 can help stabilize the metastable orthorhombic phase over the thermodynamically stable rhombohedral phase. The spontaneous formation of the seed layer enables us to grow orthorhombic Bi2Se3 on a variety of substrates including single-crystal silicon with different orientations, polycrystalline fluorine-doped tin oxide, and polycrystalline gold. The ability to stabilize the metastable phase through room-temperature electrodeposition in aqueous solution without requiring a single-crystal substrate broadens the range of applications for this semiconductor in optoelectronic and electrochemical devices. 
    more » « less
  5. Sb thin films have attracted wide interest due to their tunable band structure, topological phases, high electron mobility, and thermoelectric properties. We successfully grow epitaxial Sb thin films on a closely lattice-matched GaSb(001) surface by molecular beam epitaxy. We find a novel anisotropic directional dependence on their structural, morphological, and electronic properties. The origin of the anisotropic features is elucidated using first-principles density functional theory (DFT) calculations. The growth regime of crystalline and amorphous Sb thin films was determined by mapping the surface reconstruction phase diagram of the GaSb(001) surface under Sb2 flux, with confirmation of structural characterizations. Crystalline Sb thin films show a rhombohedral crystal structure along the rhombohedral (211) surface orientation parallel to the cubic (001) surface orientation of the GaSb substrate. At this coherent interface, Sb atoms are aligned with the GaSb lattice along the [1̄10] crystallographic direction but are not aligned well along the [110] crystallographic direction, which results in anisotropic features in reflection of high-energy electron diffraction patterns, misfit dislocation formation, surface morphology, and transport properties. Our DFT calculations show that the preferential orientation of the rhombohedral Sb (211) plane may originate from the GaSb surface, where Sb atoms align with the Ga and Sb atoms on the reconstructed surface. The formation energy calculations confirm the stability of the experimentally observed structures. Our results provide optimal film growth conditions for further studies of novel properties of Bi1−xSbx thin films with similar lattice parameters and an identical crystal structure, as well as functional heterostructures of them with III–V semiconductor layers along the (001) surface orientation, supported by a theoretical understanding of the anisotropic film orientation. 
    more » « less